|
import json
|
|
import os
|
|
from functools import partial
|
|
from types import SimpleNamespace
|
|
from typing import Any, Mapping, Optional, Tuple, Union, List
|
|
from pathlib import Path
|
|
|
|
import torch
|
|
import numpy as np
|
|
from einops import rearrange
|
|
from torch import nn
|
|
from diffusers.utils import logging
|
|
import torch.nn.functional as F
|
|
from diffusers.models.embeddings import PixArtAlphaCombinedTimestepSizeEmbeddings
|
|
from safetensors import safe_open
|
|
|
|
|
|
from ltx_video.models.autoencoders.conv_nd_factory import make_conv_nd, make_linear_nd
|
|
from ltx_video.models.autoencoders.pixel_norm import PixelNorm
|
|
from ltx_video.models.autoencoders.pixel_shuffle import PixelShuffleND
|
|
from ltx_video.models.autoencoders.vae import AutoencoderKLWrapper
|
|
from ltx_video.models.transformers.attention import Attention
|
|
from ltx_video.utils.diffusers_config_mapping import (
|
|
diffusers_and_ours_config_mapping,
|
|
make_hashable_key,
|
|
VAE_KEYS_RENAME_DICT,
|
|
)
|
|
|
|
PER_CHANNEL_STATISTICS_PREFIX = "per_channel_statistics."
|
|
logger = logging.get_logger(__name__)
|
|
|
|
|
|
class CausalVideoAutoencoder(AutoencoderKLWrapper):
|
|
@classmethod
|
|
def from_pretrained(
|
|
cls,
|
|
pretrained_model_name_or_path: Optional[Union[str, os.PathLike]],
|
|
*args,
|
|
**kwargs,
|
|
):
|
|
pretrained_model_name_or_path = Path(pretrained_model_name_or_path)
|
|
if (
|
|
pretrained_model_name_or_path.is_dir()
|
|
and (pretrained_model_name_or_path / "autoencoder.pth").exists()
|
|
):
|
|
config_local_path = pretrained_model_name_or_path / "config.json"
|
|
config = cls.load_config(config_local_path, **kwargs)
|
|
|
|
model_local_path = pretrained_model_name_or_path / "autoencoder.pth"
|
|
state_dict = torch.load(model_local_path, map_location=torch.device("cpu"))
|
|
|
|
statistics_local_path = (
|
|
pretrained_model_name_or_path / "per_channel_statistics.json"
|
|
)
|
|
if statistics_local_path.exists():
|
|
with open(statistics_local_path, "r") as file:
|
|
data = json.load(file)
|
|
transposed_data = list(zip(*data["data"]))
|
|
data_dict = {
|
|
col: torch.tensor(vals)
|
|
for col, vals in zip(data["columns"], transposed_data)
|
|
}
|
|
std_of_means = data_dict["std-of-means"]
|
|
mean_of_means = data_dict.get(
|
|
"mean-of-means", torch.zeros_like(data_dict["std-of-means"])
|
|
)
|
|
state_dict[f"{PER_CHANNEL_STATISTICS_PREFIX}std-of-means"] = (
|
|
std_of_means
|
|
)
|
|
state_dict[f"{PER_CHANNEL_STATISTICS_PREFIX}mean-of-means"] = (
|
|
mean_of_means
|
|
)
|
|
|
|
elif pretrained_model_name_or_path.is_dir():
|
|
config_path = pretrained_model_name_or_path / "vae" / "config.json"
|
|
with open(config_path, "r") as f:
|
|
config = make_hashable_key(json.load(f))
|
|
|
|
assert config in diffusers_and_ours_config_mapping, (
|
|
"Provided diffusers checkpoint config for VAE is not suppported. "
|
|
"We only support diffusers configs found in Lightricks/LTX-Video."
|
|
)
|
|
|
|
config = diffusers_and_ours_config_mapping[config]
|
|
|
|
state_dict_path = (
|
|
pretrained_model_name_or_path
|
|
/ "vae"
|
|
/ "diffusion_pytorch_model.safetensors"
|
|
)
|
|
|
|
state_dict = {}
|
|
with safe_open(state_dict_path, framework="pt", device="cpu") as f:
|
|
for k in f.keys():
|
|
state_dict[k] = f.get_tensor(k)
|
|
for key in list(state_dict.keys()):
|
|
new_key = key
|
|
for replace_key, rename_key in VAE_KEYS_RENAME_DICT.items():
|
|
new_key = new_key.replace(replace_key, rename_key)
|
|
|
|
state_dict[new_key] = state_dict.pop(key)
|
|
|
|
elif pretrained_model_name_or_path.is_file() and str(
|
|
pretrained_model_name_or_path
|
|
).endswith(".safetensors"):
|
|
state_dict = {}
|
|
with safe_open(
|
|
pretrained_model_name_or_path, framework="pt", device="cpu"
|
|
) as f:
|
|
metadata = f.metadata()
|
|
for k in f.keys():
|
|
state_dict[k] = f.get_tensor(k)
|
|
configs = json.loads(metadata["config"])
|
|
config = configs["vae"]
|
|
|
|
video_vae = cls.from_config(config)
|
|
if "torch_dtype" in kwargs:
|
|
video_vae.to(kwargs["torch_dtype"])
|
|
video_vae.load_state_dict(state_dict)
|
|
return video_vae
|
|
|
|
@staticmethod
|
|
def from_config(config):
|
|
assert (
|
|
config["_class_name"] == "CausalVideoAutoencoder"
|
|
), "config must have _class_name=CausalVideoAutoencoder"
|
|
if isinstance(config["dims"], list):
|
|
config["dims"] = tuple(config["dims"])
|
|
|
|
assert config["dims"] in [2, 3, (2, 1)], "dims must be 2, 3 or (2, 1)"
|
|
|
|
double_z = config.get("double_z", True)
|
|
latent_log_var = config.get(
|
|
"latent_log_var", "per_channel" if double_z else "none"
|
|
)
|
|
use_quant_conv = config.get("use_quant_conv", True)
|
|
normalize_latent_channels = config.get("normalize_latent_channels", False)
|
|
|
|
if use_quant_conv and latent_log_var in ["uniform", "constant"]:
|
|
raise ValueError(
|
|
f"latent_log_var={latent_log_var} requires use_quant_conv=False"
|
|
)
|
|
|
|
encoder = Encoder(
|
|
dims=config["dims"],
|
|
in_channels=config.get("in_channels", 3),
|
|
out_channels=config["latent_channels"],
|
|
blocks=config.get("encoder_blocks", config.get("blocks")),
|
|
patch_size=config.get("patch_size", 1),
|
|
latent_log_var=latent_log_var,
|
|
norm_layer=config.get("norm_layer", "group_norm"),
|
|
base_channels=config.get("encoder_base_channels", 128),
|
|
spatial_padding_mode=config.get("spatial_padding_mode", "zeros"),
|
|
)
|
|
|
|
decoder = Decoder(
|
|
dims=config["dims"],
|
|
in_channels=config["latent_channels"],
|
|
out_channels=config.get("out_channels", 3),
|
|
blocks=config.get("decoder_blocks", config.get("blocks")),
|
|
patch_size=config.get("patch_size", 1),
|
|
norm_layer=config.get("norm_layer", "group_norm"),
|
|
causal=config.get("causal_decoder", False),
|
|
timestep_conditioning=config.get("timestep_conditioning", False),
|
|
base_channels=config.get("decoder_base_channels", 128),
|
|
spatial_padding_mode=config.get("spatial_padding_mode", "zeros"),
|
|
)
|
|
|
|
dims = config["dims"]
|
|
return CausalVideoAutoencoder(
|
|
encoder=encoder,
|
|
decoder=decoder,
|
|
latent_channels=config["latent_channels"],
|
|
dims=dims,
|
|
use_quant_conv=use_quant_conv,
|
|
normalize_latent_channels=normalize_latent_channels,
|
|
)
|
|
|
|
@property
|
|
def config(self):
|
|
return SimpleNamespace(
|
|
_class_name="CausalVideoAutoencoder",
|
|
dims=self.dims,
|
|
in_channels=self.encoder.conv_in.in_channels // self.encoder.patch_size**2,
|
|
out_channels=self.decoder.conv_out.out_channels
|
|
// self.decoder.patch_size**2,
|
|
latent_channels=self.decoder.conv_in.in_channels,
|
|
encoder_blocks=self.encoder.blocks_desc,
|
|
decoder_blocks=self.decoder.blocks_desc,
|
|
scaling_factor=1.0,
|
|
norm_layer=self.encoder.norm_layer,
|
|
patch_size=self.encoder.patch_size,
|
|
latent_log_var=self.encoder.latent_log_var,
|
|
use_quant_conv=self.use_quant_conv,
|
|
causal_decoder=self.decoder.causal,
|
|
timestep_conditioning=self.decoder.timestep_conditioning,
|
|
normalize_latent_channels=self.normalize_latent_channels,
|
|
)
|
|
|
|
@property
|
|
def is_video_supported(self):
|
|
"""
|
|
Check if the model supports video inputs of shape (B, C, F, H, W). Otherwise, the model only supports 2D images.
|
|
"""
|
|
return self.dims != 2
|
|
|
|
@property
|
|
def spatial_downscale_factor(self):
|
|
return (
|
|
2
|
|
** len(
|
|
[
|
|
block
|
|
for block in self.encoder.blocks_desc
|
|
if block[0]
|
|
in [
|
|
"compress_space",
|
|
"compress_all",
|
|
"compress_all_res",
|
|
"compress_space_res",
|
|
]
|
|
]
|
|
)
|
|
* self.encoder.patch_size
|
|
)
|
|
|
|
@property
|
|
def temporal_downscale_factor(self):
|
|
return 2 ** len(
|
|
[
|
|
block
|
|
for block in self.encoder.blocks_desc
|
|
if block[0]
|
|
in [
|
|
"compress_time",
|
|
"compress_all",
|
|
"compress_all_res",
|
|
"compress_space_res",
|
|
]
|
|
]
|
|
)
|
|
|
|
def to_json_string(self) -> str:
|
|
import json
|
|
|
|
return json.dumps(self.config.__dict__)
|
|
|
|
def load_state_dict(self, state_dict: Mapping[str, Any], strict: bool = True, assign = True):
|
|
if any([key.startswith("vae.") for key in state_dict.keys()]):
|
|
state_dict = {
|
|
key.replace("vae.", ""): value
|
|
for key, value in state_dict.items()
|
|
if key.startswith("vae.")
|
|
}
|
|
|
|
ckpt_state_dict = {
|
|
key: value
|
|
for key, value in state_dict.items()
|
|
if not key.startswith(PER_CHANNEL_STATISTICS_PREFIX)
|
|
}
|
|
|
|
model_keys = set(name for name, _ in self.named_modules())
|
|
|
|
key_mapping = {
|
|
".resnets.": ".res_blocks.",
|
|
"downsamplers.0": "downsample",
|
|
"upsamplers.0": "upsample",
|
|
}
|
|
converted_state_dict = {}
|
|
for key, value in ckpt_state_dict.items():
|
|
for k, v in key_mapping.items():
|
|
key = key.replace(k, v)
|
|
|
|
key_prefix = ".".join(key.split(".")[:-1])
|
|
if "norm" in key and key_prefix not in model_keys:
|
|
logger.info(
|
|
f"Removing key {key} from state_dict as it is not present in the model"
|
|
)
|
|
continue
|
|
|
|
converted_state_dict[key] = value
|
|
|
|
a,b = super().load_state_dict(converted_state_dict, strict=strict, assign=assign)
|
|
|
|
data_dict = {
|
|
key.removeprefix(PER_CHANNEL_STATISTICS_PREFIX): value
|
|
for key, value in state_dict.items()
|
|
if key.startswith(PER_CHANNEL_STATISTICS_PREFIX)
|
|
}
|
|
if len(data_dict) > 0:
|
|
self.register_buffer("std_of_means", data_dict["std-of-means"],)
|
|
self.register_buffer(
|
|
"mean_of_means",
|
|
data_dict.get(
|
|
"mean-of-means", torch.zeros_like(data_dict["std-of-means"])
|
|
),
|
|
)
|
|
return a, b
|
|
|
|
def last_layer(self):
|
|
if hasattr(self.decoder, "conv_out"):
|
|
if isinstance(self.decoder.conv_out, nn.Sequential):
|
|
last_layer = self.decoder.conv_out[-1]
|
|
else:
|
|
last_layer = self.decoder.conv_out
|
|
else:
|
|
last_layer = self.decoder.layers[-1]
|
|
return last_layer
|
|
|
|
def set_use_tpu_flash_attention(self):
|
|
for block in self.decoder.up_blocks:
|
|
if isinstance(block, UNetMidBlock3D) and block.attention_blocks:
|
|
for attention_block in block.attention_blocks:
|
|
attention_block.set_use_tpu_flash_attention()
|
|
|
|
|
|
class Encoder(nn.Module):
|
|
r"""
|
|
The `Encoder` layer of a variational autoencoder that encodes its input into a latent representation.
|
|
|
|
Args:
|
|
dims (`int` or `Tuple[int, int]`, *optional*, defaults to 3):
|
|
The number of dimensions to use in convolutions.
|
|
in_channels (`int`, *optional*, defaults to 3):
|
|
The number of input channels.
|
|
out_channels (`int`, *optional*, defaults to 3):
|
|
The number of output channels.
|
|
blocks (`List[Tuple[str, int]]`, *optional*, defaults to `[("res_x", 1)]`):
|
|
The blocks to use. Each block is a tuple of the block name and the number of layers.
|
|
base_channels (`int`, *optional*, defaults to 128):
|
|
The number of output channels for the first convolutional layer.
|
|
norm_num_groups (`int`, *optional*, defaults to 32):
|
|
The number of groups for normalization.
|
|
patch_size (`int`, *optional*, defaults to 1):
|
|
The patch size to use. Should be a power of 2.
|
|
norm_layer (`str`, *optional*, defaults to `group_norm`):
|
|
The normalization layer to use. Can be either `group_norm` or `pixel_norm`.
|
|
latent_log_var (`str`, *optional*, defaults to `per_channel`):
|
|
The number of channels for the log variance. Can be either `per_channel`, `uniform`, `constant` or `none`.
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
dims: Union[int, Tuple[int, int]] = 3,
|
|
in_channels: int = 3,
|
|
out_channels: int = 3,
|
|
blocks: List[Tuple[str, int | dict]] = [("res_x", 1)],
|
|
base_channels: int = 128,
|
|
norm_num_groups: int = 32,
|
|
patch_size: Union[int, Tuple[int]] = 1,
|
|
norm_layer: str = "group_norm",
|
|
latent_log_var: str = "per_channel",
|
|
spatial_padding_mode: str = "zeros",
|
|
):
|
|
super().__init__()
|
|
self.patch_size = patch_size
|
|
self.norm_layer = norm_layer
|
|
self.latent_channels = out_channels
|
|
self.latent_log_var = latent_log_var
|
|
self.blocks_desc = blocks
|
|
|
|
in_channels = in_channels * patch_size**2
|
|
output_channel = base_channels
|
|
|
|
self.conv_in = make_conv_nd(
|
|
dims=dims,
|
|
in_channels=in_channels,
|
|
out_channels=output_channel,
|
|
kernel_size=3,
|
|
stride=1,
|
|
padding=1,
|
|
causal=True,
|
|
spatial_padding_mode=spatial_padding_mode,
|
|
)
|
|
|
|
self.down_blocks = nn.ModuleList([])
|
|
|
|
for block_name, block_params in blocks:
|
|
input_channel = output_channel
|
|
if isinstance(block_params, int):
|
|
block_params = {"num_layers": block_params}
|
|
|
|
if block_name == "res_x":
|
|
block = UNetMidBlock3D(
|
|
dims=dims,
|
|
in_channels=input_channel,
|
|
num_layers=block_params["num_layers"],
|
|
resnet_eps=1e-6,
|
|
resnet_groups=norm_num_groups,
|
|
norm_layer=norm_layer,
|
|
spatial_padding_mode=spatial_padding_mode,
|
|
)
|
|
elif block_name == "res_x_y":
|
|
output_channel = block_params.get("multiplier", 2) * output_channel
|
|
block = ResnetBlock3D(
|
|
dims=dims,
|
|
in_channels=input_channel,
|
|
out_channels=output_channel,
|
|
eps=1e-6,
|
|
groups=norm_num_groups,
|
|
norm_layer=norm_layer,
|
|
spatial_padding_mode=spatial_padding_mode,
|
|
)
|
|
elif block_name == "compress_time":
|
|
block = make_conv_nd(
|
|
dims=dims,
|
|
in_channels=input_channel,
|
|
out_channels=output_channel,
|
|
kernel_size=3,
|
|
stride=(2, 1, 1),
|
|
causal=True,
|
|
spatial_padding_mode=spatial_padding_mode,
|
|
)
|
|
elif block_name == "compress_space":
|
|
block = make_conv_nd(
|
|
dims=dims,
|
|
in_channels=input_channel,
|
|
out_channels=output_channel,
|
|
kernel_size=3,
|
|
stride=(1, 2, 2),
|
|
causal=True,
|
|
spatial_padding_mode=spatial_padding_mode,
|
|
)
|
|
elif block_name == "compress_all":
|
|
block = make_conv_nd(
|
|
dims=dims,
|
|
in_channels=input_channel,
|
|
out_channels=output_channel,
|
|
kernel_size=3,
|
|
stride=(2, 2, 2),
|
|
causal=True,
|
|
spatial_padding_mode=spatial_padding_mode,
|
|
)
|
|
elif block_name == "compress_all_x_y":
|
|
output_channel = block_params.get("multiplier", 2) * output_channel
|
|
block = make_conv_nd(
|
|
dims=dims,
|
|
in_channels=input_channel,
|
|
out_channels=output_channel,
|
|
kernel_size=3,
|
|
stride=(2, 2, 2),
|
|
causal=True,
|
|
spatial_padding_mode=spatial_padding_mode,
|
|
)
|
|
elif block_name == "compress_all_res":
|
|
output_channel = block_params.get("multiplier", 2) * output_channel
|
|
block = SpaceToDepthDownsample(
|
|
dims=dims,
|
|
in_channels=input_channel,
|
|
out_channels=output_channel,
|
|
stride=(2, 2, 2),
|
|
spatial_padding_mode=spatial_padding_mode,
|
|
)
|
|
elif block_name == "compress_space_res":
|
|
output_channel = block_params.get("multiplier", 2) * output_channel
|
|
block = SpaceToDepthDownsample(
|
|
dims=dims,
|
|
in_channels=input_channel,
|
|
out_channels=output_channel,
|
|
stride=(1, 2, 2),
|
|
spatial_padding_mode=spatial_padding_mode,
|
|
)
|
|
elif block_name == "compress_time_res":
|
|
output_channel = block_params.get("multiplier", 2) * output_channel
|
|
block = SpaceToDepthDownsample(
|
|
dims=dims,
|
|
in_channels=input_channel,
|
|
out_channels=output_channel,
|
|
stride=(2, 1, 1),
|
|
spatial_padding_mode=spatial_padding_mode,
|
|
)
|
|
else:
|
|
raise ValueError(f"unknown block: {block_name}")
|
|
|
|
self.down_blocks.append(block)
|
|
|
|
|
|
if norm_layer == "group_norm":
|
|
self.conv_norm_out = nn.GroupNorm(
|
|
num_channels=output_channel, num_groups=norm_num_groups, eps=1e-6
|
|
)
|
|
elif norm_layer == "pixel_norm":
|
|
self.conv_norm_out = PixelNorm()
|
|
elif norm_layer == "layer_norm":
|
|
self.conv_norm_out = LayerNorm(output_channel, eps=1e-6)
|
|
|
|
self.conv_act = nn.SiLU()
|
|
|
|
conv_out_channels = out_channels
|
|
if latent_log_var == "per_channel":
|
|
conv_out_channels *= 2
|
|
elif latent_log_var == "uniform":
|
|
conv_out_channels += 1
|
|
elif latent_log_var == "constant":
|
|
conv_out_channels += 1
|
|
elif latent_log_var != "none":
|
|
raise ValueError(f"Invalid latent_log_var: {latent_log_var}")
|
|
self.conv_out = make_conv_nd(
|
|
dims,
|
|
output_channel,
|
|
conv_out_channels,
|
|
3,
|
|
padding=1,
|
|
causal=True,
|
|
spatial_padding_mode=spatial_padding_mode,
|
|
)
|
|
|
|
self.gradient_checkpointing = False
|
|
|
|
def forward(self, sample: torch.FloatTensor) -> torch.FloatTensor:
|
|
r"""The forward method of the `Encoder` class."""
|
|
|
|
sample = patchify(sample, patch_size_hw=self.patch_size, patch_size_t=1)
|
|
sample = self.conv_in(sample)
|
|
|
|
checkpoint_fn = (
|
|
partial(torch.utils.checkpoint.checkpoint, use_reentrant=False)
|
|
if self.gradient_checkpointing and self.training
|
|
else lambda x: x
|
|
)
|
|
|
|
for down_block in self.down_blocks:
|
|
sample = checkpoint_fn(down_block)(sample)
|
|
|
|
sample = self.conv_norm_out(sample)
|
|
sample = self.conv_act(sample)
|
|
sample = self.conv_out(sample)
|
|
|
|
if self.latent_log_var == "uniform":
|
|
last_channel = sample[:, -1:, ...]
|
|
num_dims = sample.dim()
|
|
|
|
if num_dims == 4:
|
|
|
|
repeated_last_channel = last_channel.repeat(
|
|
1, sample.shape[1] - 2, 1, 1
|
|
)
|
|
sample = torch.cat([sample, repeated_last_channel], dim=1)
|
|
elif num_dims == 5:
|
|
|
|
repeated_last_channel = last_channel.repeat(
|
|
1, sample.shape[1] - 2, 1, 1, 1
|
|
)
|
|
sample = torch.cat([sample, repeated_last_channel], dim=1)
|
|
else:
|
|
raise ValueError(f"Invalid input shape: {sample.shape}")
|
|
elif self.latent_log_var == "constant":
|
|
sample = sample[:, :-1, ...]
|
|
approx_ln_0 = (
|
|
-30
|
|
)
|
|
sample = torch.cat(
|
|
[sample, torch.ones_like(sample, device=sample.device) * approx_ln_0],
|
|
dim=1,
|
|
)
|
|
|
|
return sample
|
|
|
|
|
|
class Decoder(nn.Module):
|
|
r"""
|
|
The `Decoder` layer of a variational autoencoder that decodes its latent representation into an output sample.
|
|
|
|
Args:
|
|
dims (`int` or `Tuple[int, int]`, *optional*, defaults to 3):
|
|
The number of dimensions to use in convolutions.
|
|
in_channels (`int`, *optional*, defaults to 3):
|
|
The number of input channels.
|
|
out_channels (`int`, *optional*, defaults to 3):
|
|
The number of output channels.
|
|
blocks (`List[Tuple[str, int]]`, *optional*, defaults to `[("res_x", 1)]`):
|
|
The blocks to use. Each block is a tuple of the block name and the number of layers.
|
|
base_channels (`int`, *optional*, defaults to 128):
|
|
The number of output channels for the first convolutional layer.
|
|
norm_num_groups (`int`, *optional*, defaults to 32):
|
|
The number of groups for normalization.
|
|
patch_size (`int`, *optional*, defaults to 1):
|
|
The patch size to use. Should be a power of 2.
|
|
norm_layer (`str`, *optional*, defaults to `group_norm`):
|
|
The normalization layer to use. Can be either `group_norm` or `pixel_norm`.
|
|
causal (`bool`, *optional*, defaults to `True`):
|
|
Whether to use causal convolutions or not.
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
dims,
|
|
in_channels: int = 3,
|
|
out_channels: int = 3,
|
|
blocks: List[Tuple[str, int | dict]] = [("res_x", 1)],
|
|
base_channels: int = 128,
|
|
layers_per_block: int = 2,
|
|
norm_num_groups: int = 32,
|
|
patch_size: int = 1,
|
|
norm_layer: str = "group_norm",
|
|
causal: bool = True,
|
|
timestep_conditioning: bool = False,
|
|
spatial_padding_mode: str = "zeros",
|
|
):
|
|
super().__init__()
|
|
self.patch_size = patch_size
|
|
self.layers_per_block = layers_per_block
|
|
out_channels = out_channels * patch_size**2
|
|
self.causal = causal
|
|
self.blocks_desc = blocks
|
|
|
|
|
|
output_channel = base_channels
|
|
for block_name, block_params in list(reversed(blocks)):
|
|
block_params = block_params if isinstance(block_params, dict) else {}
|
|
if block_name == "res_x_y":
|
|
output_channel = output_channel * block_params.get("multiplier", 2)
|
|
if block_name == "compress_all":
|
|
output_channel = output_channel * block_params.get("multiplier", 1)
|
|
|
|
self.conv_in = make_conv_nd(
|
|
dims,
|
|
in_channels,
|
|
output_channel,
|
|
kernel_size=3,
|
|
stride=1,
|
|
padding=1,
|
|
causal=True,
|
|
spatial_padding_mode=spatial_padding_mode,
|
|
)
|
|
|
|
self.up_blocks = nn.ModuleList([])
|
|
|
|
for block_name, block_params in list(reversed(blocks)):
|
|
input_channel = output_channel
|
|
if isinstance(block_params, int):
|
|
block_params = {"num_layers": block_params}
|
|
|
|
if block_name == "res_x":
|
|
block = UNetMidBlock3D(
|
|
dims=dims,
|
|
in_channels=input_channel,
|
|
num_layers=block_params["num_layers"],
|
|
resnet_eps=1e-6,
|
|
resnet_groups=norm_num_groups,
|
|
norm_layer=norm_layer,
|
|
inject_noise=block_params.get("inject_noise", False),
|
|
timestep_conditioning=timestep_conditioning,
|
|
spatial_padding_mode=spatial_padding_mode,
|
|
)
|
|
elif block_name == "attn_res_x":
|
|
block = UNetMidBlock3D(
|
|
dims=dims,
|
|
in_channels=input_channel,
|
|
num_layers=block_params["num_layers"],
|
|
resnet_groups=norm_num_groups,
|
|
norm_layer=norm_layer,
|
|
inject_noise=block_params.get("inject_noise", False),
|
|
timestep_conditioning=timestep_conditioning,
|
|
attention_head_dim=block_params["attention_head_dim"],
|
|
spatial_padding_mode=spatial_padding_mode,
|
|
)
|
|
elif block_name == "res_x_y":
|
|
output_channel = output_channel // block_params.get("multiplier", 2)
|
|
block = ResnetBlock3D(
|
|
dims=dims,
|
|
in_channels=input_channel,
|
|
out_channels=output_channel,
|
|
eps=1e-6,
|
|
groups=norm_num_groups,
|
|
norm_layer=norm_layer,
|
|
inject_noise=block_params.get("inject_noise", False),
|
|
timestep_conditioning=False,
|
|
spatial_padding_mode=spatial_padding_mode,
|
|
)
|
|
elif block_name == "compress_time":
|
|
block = DepthToSpaceUpsample(
|
|
dims=dims,
|
|
in_channels=input_channel,
|
|
stride=(2, 1, 1),
|
|
spatial_padding_mode=spatial_padding_mode,
|
|
)
|
|
elif block_name == "compress_space":
|
|
block = DepthToSpaceUpsample(
|
|
dims=dims,
|
|
in_channels=input_channel,
|
|
stride=(1, 2, 2),
|
|
spatial_padding_mode=spatial_padding_mode,
|
|
)
|
|
elif block_name == "compress_all":
|
|
output_channel = output_channel // block_params.get("multiplier", 1)
|
|
block = DepthToSpaceUpsample(
|
|
dims=dims,
|
|
in_channels=input_channel,
|
|
stride=(2, 2, 2),
|
|
residual=block_params.get("residual", False),
|
|
out_channels_reduction_factor=block_params.get("multiplier", 1),
|
|
spatial_padding_mode=spatial_padding_mode,
|
|
)
|
|
else:
|
|
raise ValueError(f"unknown layer: {block_name}")
|
|
|
|
self.up_blocks.append(block)
|
|
|
|
if norm_layer == "group_norm":
|
|
self.conv_norm_out = nn.GroupNorm(
|
|
num_channels=output_channel, num_groups=norm_num_groups, eps=1e-6
|
|
)
|
|
elif norm_layer == "pixel_norm":
|
|
self.conv_norm_out = PixelNorm()
|
|
elif norm_layer == "layer_norm":
|
|
self.conv_norm_out = LayerNorm(output_channel, eps=1e-6)
|
|
|
|
self.conv_act = nn.SiLU()
|
|
self.conv_out = make_conv_nd(
|
|
dims,
|
|
output_channel,
|
|
out_channels,
|
|
3,
|
|
padding=1,
|
|
causal=True,
|
|
spatial_padding_mode=spatial_padding_mode,
|
|
)
|
|
|
|
self.gradient_checkpointing = False
|
|
|
|
self.timestep_conditioning = timestep_conditioning
|
|
|
|
if timestep_conditioning:
|
|
self.timestep_scale_multiplier = nn.Parameter(
|
|
torch.tensor(1000.0, dtype=torch.float32)
|
|
)
|
|
self.last_time_embedder = PixArtAlphaCombinedTimestepSizeEmbeddings(
|
|
output_channel * 2, 0
|
|
)
|
|
self.last_scale_shift_table = nn.Parameter(
|
|
torch.randn(2, output_channel) / output_channel**0.5
|
|
)
|
|
|
|
def forward(
|
|
self,
|
|
sample: torch.FloatTensor,
|
|
target_shape,
|
|
timestep: Optional[torch.Tensor] = None,
|
|
) -> torch.FloatTensor:
|
|
r"""The forward method of the `Decoder` class."""
|
|
assert target_shape is not None, "target_shape must be provided"
|
|
batch_size = sample.shape[0]
|
|
|
|
sample = self.conv_in(sample, causal=self.causal)
|
|
|
|
upscale_dtype = next(iter(self.up_blocks.parameters())).dtype
|
|
|
|
checkpoint_fn = (
|
|
partial(torch.utils.checkpoint.checkpoint, use_reentrant=False)
|
|
if self.gradient_checkpointing and self.training
|
|
else lambda x: x
|
|
)
|
|
|
|
sample = sample.to(upscale_dtype)
|
|
|
|
if self.timestep_conditioning:
|
|
assert (
|
|
timestep is not None
|
|
), "should pass timestep with timestep_conditioning=True"
|
|
scaled_timestep = timestep * self.timestep_scale_multiplier
|
|
|
|
for up_block in self.up_blocks:
|
|
if self.timestep_conditioning and isinstance(up_block, UNetMidBlock3D):
|
|
sample = checkpoint_fn(up_block)(
|
|
sample, causal=self.causal, timestep=scaled_timestep
|
|
)
|
|
else:
|
|
sample = checkpoint_fn(up_block)(sample, causal=self.causal)
|
|
|
|
sample = self.conv_norm_out(sample)
|
|
|
|
if self.timestep_conditioning:
|
|
embedded_timestep = self.last_time_embedder(
|
|
timestep=scaled_timestep.flatten(),
|
|
resolution=None,
|
|
aspect_ratio=None,
|
|
batch_size=sample.shape[0],
|
|
hidden_dtype=sample.dtype,
|
|
)
|
|
embedded_timestep = embedded_timestep.view(
|
|
batch_size, embedded_timestep.shape[-1], 1, 1, 1
|
|
)
|
|
ada_values = self.last_scale_shift_table[
|
|
None, ..., None, None, None
|
|
] + embedded_timestep.reshape(
|
|
batch_size,
|
|
2,
|
|
-1,
|
|
embedded_timestep.shape[-3],
|
|
embedded_timestep.shape[-2],
|
|
embedded_timestep.shape[-1],
|
|
)
|
|
shift, scale = ada_values.unbind(dim=1)
|
|
sample = sample * (1 + scale) + shift
|
|
|
|
sample = self.conv_act(sample)
|
|
sample = self.conv_out(sample, causal=self.causal)
|
|
|
|
sample = unpatchify(sample, patch_size_hw=self.patch_size, patch_size_t=1)
|
|
|
|
return sample
|
|
|
|
|
|
class UNetMidBlock3D(nn.Module):
|
|
"""
|
|
A 3D UNet mid-block [`UNetMidBlock3D`] with multiple residual blocks.
|
|
|
|
Args:
|
|
in_channels (`int`): The number of input channels.
|
|
dropout (`float`, *optional*, defaults to 0.0): The dropout rate.
|
|
num_layers (`int`, *optional*, defaults to 1): The number of residual blocks.
|
|
resnet_eps (`float`, *optional*, 1e-6 ): The epsilon value for the resnet blocks.
|
|
resnet_groups (`int`, *optional*, defaults to 32):
|
|
The number of groups to use in the group normalization layers of the resnet blocks.
|
|
norm_layer (`str`, *optional*, defaults to `group_norm`):
|
|
The normalization layer to use. Can be either `group_norm` or `pixel_norm`.
|
|
inject_noise (`bool`, *optional*, defaults to `False`):
|
|
Whether to inject noise into the hidden states.
|
|
timestep_conditioning (`bool`, *optional*, defaults to `False`):
|
|
Whether to condition the hidden states on the timestep.
|
|
attention_head_dim (`int`, *optional*, defaults to -1):
|
|
The dimension of the attention head. If -1, no attention is used.
|
|
|
|
Returns:
|
|
`torch.FloatTensor`: The output of the last residual block, which is a tensor of shape `(batch_size,
|
|
in_channels, height, width)`.
|
|
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
dims: Union[int, Tuple[int, int]],
|
|
in_channels: int,
|
|
dropout: float = 0.0,
|
|
num_layers: int = 1,
|
|
resnet_eps: float = 1e-6,
|
|
resnet_groups: int = 32,
|
|
norm_layer: str = "group_norm",
|
|
inject_noise: bool = False,
|
|
timestep_conditioning: bool = False,
|
|
attention_head_dim: int = -1,
|
|
spatial_padding_mode: str = "zeros",
|
|
):
|
|
super().__init__()
|
|
resnet_groups = (
|
|
resnet_groups if resnet_groups is not None else min(in_channels // 4, 32)
|
|
)
|
|
self.timestep_conditioning = timestep_conditioning
|
|
|
|
if timestep_conditioning:
|
|
self.time_embedder = PixArtAlphaCombinedTimestepSizeEmbeddings(
|
|
in_channels * 4, 0
|
|
)
|
|
|
|
self.res_blocks = nn.ModuleList(
|
|
[
|
|
ResnetBlock3D(
|
|
dims=dims,
|
|
in_channels=in_channels,
|
|
out_channels=in_channels,
|
|
eps=resnet_eps,
|
|
groups=resnet_groups,
|
|
dropout=dropout,
|
|
norm_layer=norm_layer,
|
|
inject_noise=inject_noise,
|
|
timestep_conditioning=timestep_conditioning,
|
|
spatial_padding_mode=spatial_padding_mode,
|
|
)
|
|
for _ in range(num_layers)
|
|
]
|
|
)
|
|
|
|
self.attention_blocks = None
|
|
|
|
if attention_head_dim > 0:
|
|
if attention_head_dim > in_channels:
|
|
raise ValueError(
|
|
"attention_head_dim must be less than or equal to in_channels"
|
|
)
|
|
|
|
self.attention_blocks = nn.ModuleList(
|
|
[
|
|
Attention(
|
|
query_dim=in_channels,
|
|
heads=in_channels // attention_head_dim,
|
|
dim_head=attention_head_dim,
|
|
bias=True,
|
|
out_bias=True,
|
|
qk_norm="rms_norm",
|
|
residual_connection=True,
|
|
)
|
|
for _ in range(num_layers)
|
|
]
|
|
)
|
|
|
|
def forward(
|
|
self,
|
|
hidden_states: torch.FloatTensor,
|
|
causal: bool = True,
|
|
timestep: Optional[torch.Tensor] = None,
|
|
) -> torch.FloatTensor:
|
|
timestep_embed = None
|
|
if self.timestep_conditioning:
|
|
assert (
|
|
timestep is not None
|
|
), "should pass timestep with timestep_conditioning=True"
|
|
batch_size = hidden_states.shape[0]
|
|
timestep_embed = self.time_embedder(
|
|
timestep=timestep.flatten(),
|
|
resolution=None,
|
|
aspect_ratio=None,
|
|
batch_size=batch_size,
|
|
hidden_dtype=hidden_states.dtype,
|
|
)
|
|
timestep_embed = timestep_embed.view(
|
|
batch_size, timestep_embed.shape[-1], 1, 1, 1
|
|
)
|
|
|
|
if self.attention_blocks:
|
|
for resnet, attention in zip(self.res_blocks, self.attention_blocks):
|
|
hidden_states = resnet(
|
|
hidden_states, causal=causal, timestep=timestep_embed
|
|
)
|
|
|
|
|
|
batch_size, channel, frames, height, width = hidden_states.shape
|
|
hidden_states = hidden_states.view(
|
|
batch_size, channel, frames * height * width
|
|
).transpose(1, 2)
|
|
|
|
if attention.use_tpu_flash_attention:
|
|
|
|
seq_len = hidden_states.shape[1]
|
|
block_k_major = 512
|
|
pad_len = (block_k_major - seq_len % block_k_major) % block_k_major
|
|
if pad_len > 0:
|
|
hidden_states = F.pad(
|
|
hidden_states, (0, 0, 0, pad_len), "constant", 0
|
|
)
|
|
|
|
|
|
mask = torch.ones(
|
|
(hidden_states.shape[0], seq_len),
|
|
device=hidden_states.device,
|
|
dtype=hidden_states.dtype,
|
|
)
|
|
if pad_len > 0:
|
|
mask = F.pad(mask, (0, pad_len), "constant", 0)
|
|
|
|
hidden_states = attention(
|
|
hidden_states,
|
|
attention_mask=(
|
|
None if not attention.use_tpu_flash_attention else mask
|
|
),
|
|
)
|
|
|
|
if attention.use_tpu_flash_attention:
|
|
|
|
if pad_len > 0:
|
|
hidden_states = hidden_states[:, :-pad_len, :]
|
|
|
|
|
|
hidden_states = hidden_states.transpose(-1, -2).reshape(
|
|
batch_size, channel, frames, height, width
|
|
)
|
|
else:
|
|
for resnet in self.res_blocks:
|
|
hidden_states = resnet(
|
|
hidden_states, causal=causal, timestep=timestep_embed
|
|
)
|
|
|
|
return hidden_states
|
|
|
|
|
|
class SpaceToDepthDownsample(nn.Module):
|
|
def __init__(self, dims, in_channels, out_channels, stride, spatial_padding_mode):
|
|
super().__init__()
|
|
self.stride = stride
|
|
self.group_size = in_channels * np.prod(stride) // out_channels
|
|
self.conv = make_conv_nd(
|
|
dims=dims,
|
|
in_channels=in_channels,
|
|
out_channels=out_channels // np.prod(stride),
|
|
kernel_size=3,
|
|
stride=1,
|
|
causal=True,
|
|
spatial_padding_mode=spatial_padding_mode,
|
|
)
|
|
|
|
def forward(self, x, causal: bool = True):
|
|
if self.stride[0] == 2:
|
|
x = torch.cat(
|
|
[x[:, :, :1, :, :], x], dim=2
|
|
)
|
|
|
|
|
|
x_in = rearrange(
|
|
x,
|
|
"b c (d p1) (h p2) (w p3) -> b (c p1 p2 p3) d h w",
|
|
p1=self.stride[0],
|
|
p2=self.stride[1],
|
|
p3=self.stride[2],
|
|
)
|
|
x_in = rearrange(x_in, "b (c g) d h w -> b c g d h w", g=self.group_size)
|
|
x_in = x_in.mean(dim=2)
|
|
|
|
|
|
x = self.conv(x, causal=causal)
|
|
x = rearrange(
|
|
x,
|
|
"b c (d p1) (h p2) (w p3) -> b (c p1 p2 p3) d h w",
|
|
p1=self.stride[0],
|
|
p2=self.stride[1],
|
|
p3=self.stride[2],
|
|
)
|
|
|
|
x = x + x_in
|
|
|
|
return x
|
|
|
|
|
|
class DepthToSpaceUpsample(nn.Module):
|
|
def __init__(
|
|
self,
|
|
dims,
|
|
in_channels,
|
|
stride,
|
|
residual=False,
|
|
out_channels_reduction_factor=1,
|
|
spatial_padding_mode="zeros",
|
|
):
|
|
super().__init__()
|
|
self.stride = stride
|
|
self.out_channels = (
|
|
np.prod(stride) * in_channels // out_channels_reduction_factor
|
|
)
|
|
self.conv = make_conv_nd(
|
|
dims=dims,
|
|
in_channels=in_channels,
|
|
out_channels=self.out_channels,
|
|
kernel_size=3,
|
|
stride=1,
|
|
causal=True,
|
|
spatial_padding_mode=spatial_padding_mode,
|
|
)
|
|
self.pixel_shuffle = PixelShuffleND(dims=dims, upscale_factors=stride)
|
|
self.residual = residual
|
|
self.out_channels_reduction_factor = out_channels_reduction_factor
|
|
|
|
def forward(self, x, causal: bool = True):
|
|
if self.residual:
|
|
|
|
x_in = self.pixel_shuffle(x)
|
|
num_repeat = np.prod(self.stride) // self.out_channels_reduction_factor
|
|
x_in = x_in.repeat(1, num_repeat, 1, 1, 1)
|
|
if self.stride[0] == 2:
|
|
x_in = x_in[:, :, 1:, :, :]
|
|
x = self.conv(x, causal=causal)
|
|
x = self.pixel_shuffle(x)
|
|
if self.stride[0] == 2:
|
|
x = x[:, :, 1:, :, :]
|
|
if self.residual:
|
|
x = x + x_in
|
|
return x
|
|
|
|
|
|
class LayerNorm(nn.Module):
|
|
def __init__(self, dim, eps, elementwise_affine=True) -> None:
|
|
super().__init__()
|
|
self.norm = nn.LayerNorm(dim, eps=eps, elementwise_affine=elementwise_affine)
|
|
|
|
def forward(self, x):
|
|
x = rearrange(x, "b c d h w -> b d h w c")
|
|
x = self.norm(x)
|
|
x = rearrange(x, "b d h w c -> b c d h w")
|
|
return x
|
|
|
|
|
|
class ResnetBlock3D(nn.Module):
|
|
r"""
|
|
A Resnet block.
|
|
|
|
Parameters:
|
|
in_channels (`int`): The number of channels in the input.
|
|
out_channels (`int`, *optional*, default to be `None`):
|
|
The number of output channels for the first conv layer. If None, same as `in_channels`.
|
|
dropout (`float`, *optional*, defaults to `0.0`): The dropout probability to use.
|
|
groups (`int`, *optional*, default to `32`): The number of groups to use for the first normalization layer.
|
|
eps (`float`, *optional*, defaults to `1e-6`): The epsilon to use for the normalization.
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
dims: Union[int, Tuple[int, int]],
|
|
in_channels: int,
|
|
out_channels: Optional[int] = None,
|
|
dropout: float = 0.0,
|
|
groups: int = 32,
|
|
eps: float = 1e-6,
|
|
norm_layer: str = "group_norm",
|
|
inject_noise: bool = False,
|
|
timestep_conditioning: bool = False,
|
|
spatial_padding_mode: str = "zeros",
|
|
):
|
|
super().__init__()
|
|
self.in_channels = in_channels
|
|
out_channels = in_channels if out_channels is None else out_channels
|
|
self.out_channels = out_channels
|
|
self.inject_noise = inject_noise
|
|
|
|
if norm_layer == "group_norm":
|
|
self.norm1 = nn.GroupNorm(
|
|
num_groups=groups, num_channels=in_channels, eps=eps, affine=True
|
|
)
|
|
elif norm_layer == "pixel_norm":
|
|
self.norm1 = PixelNorm()
|
|
elif norm_layer == "layer_norm":
|
|
self.norm1 = LayerNorm(in_channels, eps=eps, elementwise_affine=True)
|
|
|
|
self.non_linearity = nn.SiLU()
|
|
|
|
self.conv1 = make_conv_nd(
|
|
dims,
|
|
in_channels,
|
|
out_channels,
|
|
kernel_size=3,
|
|
stride=1,
|
|
padding=1,
|
|
causal=True,
|
|
spatial_padding_mode=spatial_padding_mode,
|
|
)
|
|
|
|
if inject_noise:
|
|
self.per_channel_scale1 = nn.Parameter(torch.zeros((in_channels, 1, 1)))
|
|
|
|
if norm_layer == "group_norm":
|
|
self.norm2 = nn.GroupNorm(
|
|
num_groups=groups, num_channels=out_channels, eps=eps, affine=True
|
|
)
|
|
elif norm_layer == "pixel_norm":
|
|
self.norm2 = PixelNorm()
|
|
elif norm_layer == "layer_norm":
|
|
self.norm2 = LayerNorm(out_channels, eps=eps, elementwise_affine=True)
|
|
|
|
self.dropout = torch.nn.Dropout(dropout)
|
|
|
|
self.conv2 = make_conv_nd(
|
|
dims,
|
|
out_channels,
|
|
out_channels,
|
|
kernel_size=3,
|
|
stride=1,
|
|
padding=1,
|
|
causal=True,
|
|
spatial_padding_mode=spatial_padding_mode,
|
|
)
|
|
|
|
if inject_noise:
|
|
self.per_channel_scale2 = nn.Parameter(torch.zeros((in_channels, 1, 1)))
|
|
|
|
self.conv_shortcut = (
|
|
make_linear_nd(
|
|
dims=dims, in_channels=in_channels, out_channels=out_channels
|
|
)
|
|
if in_channels != out_channels
|
|
else nn.Identity()
|
|
)
|
|
|
|
self.norm3 = (
|
|
LayerNorm(in_channels, eps=eps, elementwise_affine=True)
|
|
if in_channels != out_channels
|
|
else nn.Identity()
|
|
)
|
|
|
|
self.timestep_conditioning = timestep_conditioning
|
|
|
|
if timestep_conditioning:
|
|
self.scale_shift_table = nn.Parameter(
|
|
torch.randn(4, in_channels) / in_channels**0.5
|
|
)
|
|
|
|
def _feed_spatial_noise(
|
|
self, hidden_states: torch.FloatTensor, per_channel_scale: torch.FloatTensor
|
|
) -> torch.FloatTensor:
|
|
spatial_shape = hidden_states.shape[-2:]
|
|
device = hidden_states.device
|
|
dtype = hidden_states.dtype
|
|
|
|
|
|
spatial_noise = torch.randn(spatial_shape, device=device, dtype=dtype)[None]
|
|
scaled_noise = (spatial_noise * per_channel_scale)[None, :, None, ...]
|
|
hidden_states = hidden_states + scaled_noise
|
|
|
|
return hidden_states
|
|
|
|
def forward(
|
|
self,
|
|
input_tensor: torch.FloatTensor,
|
|
causal: bool = True,
|
|
timestep: Optional[torch.Tensor] = None,
|
|
) -> torch.FloatTensor:
|
|
hidden_states = input_tensor
|
|
batch_size = hidden_states.shape[0]
|
|
|
|
hidden_states = self.norm1(hidden_states)
|
|
if self.timestep_conditioning:
|
|
assert (
|
|
timestep is not None
|
|
), "should pass timestep with timestep_conditioning=True"
|
|
ada_values = self.scale_shift_table[
|
|
None, ..., None, None, None
|
|
] + timestep.reshape(
|
|
batch_size,
|
|
4,
|
|
-1,
|
|
timestep.shape[-3],
|
|
timestep.shape[-2],
|
|
timestep.shape[-1],
|
|
)
|
|
shift1, scale1, shift2, scale2 = ada_values.unbind(dim=1)
|
|
|
|
hidden_states = hidden_states * (1 + scale1) + shift1
|
|
|
|
hidden_states = self.non_linearity(hidden_states)
|
|
|
|
hidden_states = self.conv1(hidden_states, causal=causal)
|
|
|
|
if self.inject_noise:
|
|
hidden_states = self._feed_spatial_noise(
|
|
hidden_states, self.per_channel_scale1
|
|
)
|
|
|
|
hidden_states = self.norm2(hidden_states)
|
|
|
|
if self.timestep_conditioning:
|
|
hidden_states = hidden_states * (1 + scale2) + shift2
|
|
|
|
hidden_states = self.non_linearity(hidden_states)
|
|
|
|
hidden_states = self.dropout(hidden_states)
|
|
|
|
hidden_states = self.conv2(hidden_states, causal=causal)
|
|
|
|
if self.inject_noise:
|
|
hidden_states = self._feed_spatial_noise(
|
|
hidden_states, self.per_channel_scale2
|
|
)
|
|
|
|
input_tensor = self.norm3(input_tensor)
|
|
|
|
batch_size = input_tensor.shape[0]
|
|
|
|
input_tensor = self.conv_shortcut(input_tensor)
|
|
|
|
output_tensor = input_tensor + hidden_states
|
|
|
|
return output_tensor
|
|
|
|
|
|
def patchify(x, patch_size_hw, patch_size_t=1):
|
|
if patch_size_hw == 1 and patch_size_t == 1:
|
|
return x
|
|
if x.dim() == 4:
|
|
x = rearrange(
|
|
x, "b c (h q) (w r) -> b (c r q) h w", q=patch_size_hw, r=patch_size_hw
|
|
)
|
|
elif x.dim() == 5:
|
|
x = rearrange(
|
|
x,
|
|
"b c (f p) (h q) (w r) -> b (c p r q) f h w",
|
|
p=patch_size_t,
|
|
q=patch_size_hw,
|
|
r=patch_size_hw,
|
|
)
|
|
else:
|
|
raise ValueError(f"Invalid input shape: {x.shape}")
|
|
|
|
return x
|
|
|
|
|
|
def unpatchify(x, patch_size_hw, patch_size_t=1):
|
|
if patch_size_hw == 1 and patch_size_t == 1:
|
|
return x
|
|
|
|
if x.dim() == 4:
|
|
x = rearrange(
|
|
x, "b (c r q) h w -> b c (h q) (w r)", q=patch_size_hw, r=patch_size_hw
|
|
)
|
|
elif x.dim() == 5:
|
|
x = rearrange(
|
|
x,
|
|
"b (c p r q) f h w -> b c (f p) (h q) (w r)",
|
|
p=patch_size_t,
|
|
q=patch_size_hw,
|
|
r=patch_size_hw,
|
|
)
|
|
|
|
return x
|
|
|
|
|
|
def create_video_autoencoder_demo_config(
|
|
latent_channels: int = 64,
|
|
):
|
|
encoder_blocks = [
|
|
("res_x", {"num_layers": 2}),
|
|
("compress_space_res", {"multiplier": 2}),
|
|
("res_x", {"num_layers": 2}),
|
|
("compress_time_res", {"multiplier": 2}),
|
|
("res_x", {"num_layers": 1}),
|
|
("compress_all_res", {"multiplier": 2}),
|
|
("res_x", {"num_layers": 1}),
|
|
("compress_all_res", {"multiplier": 2}),
|
|
("res_x", {"num_layers": 1}),
|
|
]
|
|
decoder_blocks = [
|
|
("res_x", {"num_layers": 2, "inject_noise": False}),
|
|
("compress_all", {"residual": True, "multiplier": 2}),
|
|
("res_x", {"num_layers": 2, "inject_noise": False}),
|
|
("compress_all", {"residual": True, "multiplier": 2}),
|
|
("res_x", {"num_layers": 2, "inject_noise": False}),
|
|
("compress_all", {"residual": True, "multiplier": 2}),
|
|
("res_x", {"num_layers": 2, "inject_noise": False}),
|
|
]
|
|
return {
|
|
"_class_name": "CausalVideoAutoencoder",
|
|
"dims": 3,
|
|
"encoder_blocks": encoder_blocks,
|
|
"decoder_blocks": decoder_blocks,
|
|
"latent_channels": latent_channels,
|
|
"norm_layer": "pixel_norm",
|
|
"patch_size": 4,
|
|
"latent_log_var": "uniform",
|
|
"use_quant_conv": False,
|
|
"causal_decoder": False,
|
|
"timestep_conditioning": True,
|
|
"spatial_padding_mode": "replicate",
|
|
}
|
|
|
|
|
|
def test_vae_patchify_unpatchify():
|
|
import torch
|
|
|
|
x = torch.randn(2, 3, 8, 64, 64)
|
|
x_patched = patchify(x, patch_size_hw=4, patch_size_t=4)
|
|
x_unpatched = unpatchify(x_patched, patch_size_hw=4, patch_size_t=4)
|
|
assert torch.allclose(x, x_unpatched)
|
|
|
|
|
|
def demo_video_autoencoder_forward_backward():
|
|
|
|
config = create_video_autoencoder_demo_config()
|
|
|
|
|
|
video_autoencoder = CausalVideoAutoencoder.from_config(config)
|
|
|
|
print(video_autoencoder)
|
|
video_autoencoder.eval()
|
|
|
|
total_params = sum(p.numel() for p in video_autoencoder.parameters())
|
|
print(f"Total number of parameters in VideoAutoencoder: {total_params:,}")
|
|
|
|
|
|
|
|
|
|
input_videos = torch.randn(2, 3, 17, 64, 64)
|
|
|
|
|
|
latent = video_autoencoder.encode(input_videos).latent_dist.mode()
|
|
print(f"input shape={input_videos.shape}")
|
|
print(f"latent shape={latent.shape}")
|
|
|
|
timestep = torch.ones(input_videos.shape[0]) * 0.1
|
|
reconstructed_videos = video_autoencoder.decode(
|
|
latent, target_shape=input_videos.shape, timestep=timestep
|
|
).sample
|
|
|
|
print(f"reconstructed shape={reconstructed_videos.shape}")
|
|
|
|
|
|
input_image = input_videos[:, :, :1, :, :]
|
|
image_latent = video_autoencoder.encode(input_image).latent_dist.mode()
|
|
_ = video_autoencoder.decode(
|
|
image_latent, target_shape=image_latent.shape, timestep=timestep
|
|
).sample
|
|
|
|
first_frame_latent = latent[:, :, :1, :, :]
|
|
|
|
assert torch.allclose(image_latent, first_frame_latent, atol=1e-6)
|
|
|
|
|
|
|
|
|
|
|
|
loss = torch.nn.functional.mse_loss(input_videos, reconstructed_videos)
|
|
|
|
|
|
loss.backward()
|
|
|
|
print(f"Demo completed with loss: {loss.item()}")
|
|
|
|
|
|
|
|
if __name__ == "__main__":
|
|
demo_video_autoencoder_forward_backward()
|
|
|