|
import torch.nn as nn
|
|
|
|
|
|
def _make_scratch(in_shape, out_shape, groups=1, expand=False):
|
|
scratch = nn.Module()
|
|
|
|
out_shape1 = out_shape
|
|
out_shape2 = out_shape
|
|
out_shape3 = out_shape
|
|
if len(in_shape) >= 4:
|
|
out_shape4 = out_shape
|
|
|
|
if expand:
|
|
out_shape1 = out_shape
|
|
out_shape2 = out_shape * 2
|
|
out_shape3 = out_shape * 4
|
|
if len(in_shape) >= 4:
|
|
out_shape4 = out_shape * 8
|
|
|
|
scratch.layer1_rn = nn.Conv2d(in_shape[0], out_shape1, kernel_size=3, stride=1, padding=1, bias=False,
|
|
groups=groups)
|
|
scratch.layer2_rn = nn.Conv2d(in_shape[1], out_shape2, kernel_size=3, stride=1, padding=1, bias=False,
|
|
groups=groups)
|
|
scratch.layer3_rn = nn.Conv2d(in_shape[2], out_shape3, kernel_size=3, stride=1, padding=1, bias=False,
|
|
groups=groups)
|
|
if len(in_shape) >= 4:
|
|
scratch.layer4_rn = nn.Conv2d(in_shape[3], out_shape4, kernel_size=3, stride=1, padding=1, bias=False,
|
|
groups=groups)
|
|
|
|
return scratch
|
|
|
|
|
|
class ResidualConvUnit(nn.Module):
|
|
"""Residual convolution module.
|
|
"""
|
|
|
|
def __init__(self, features, activation, bn):
|
|
"""Init.
|
|
|
|
Args:
|
|
features (int): number of features
|
|
"""
|
|
super().__init__()
|
|
|
|
self.bn = bn
|
|
|
|
self.groups = 1
|
|
|
|
self.conv1 = nn.Conv2d(features, features, kernel_size=3, stride=1, padding=1, bias=True, groups=self.groups)
|
|
|
|
self.conv2 = nn.Conv2d(features, features, kernel_size=3, stride=1, padding=1, bias=True, groups=self.groups)
|
|
|
|
if self.bn == True:
|
|
self.bn1 = nn.BatchNorm2d(features)
|
|
self.bn2 = nn.BatchNorm2d(features)
|
|
|
|
self.activation = activation
|
|
|
|
self.skip_add = nn.quantized.FloatFunctional()
|
|
|
|
def forward(self, x):
|
|
"""Forward pass.
|
|
|
|
Args:
|
|
x (tensor): input
|
|
|
|
Returns:
|
|
tensor: output
|
|
"""
|
|
|
|
out = self.activation(x)
|
|
out = self.conv1(out)
|
|
if self.bn == True:
|
|
out = self.bn1(out)
|
|
|
|
out = self.activation(out)
|
|
out = self.conv2(out)
|
|
if self.bn == True:
|
|
out = self.bn2(out)
|
|
|
|
if self.groups > 1:
|
|
out = self.conv_merge(out)
|
|
|
|
return self.skip_add.add(out, x)
|
|
|
|
|
|
class FeatureFusionBlock(nn.Module):
|
|
"""Feature fusion block.
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
features,
|
|
activation,
|
|
deconv=False,
|
|
bn=False,
|
|
expand=False,
|
|
align_corners=True,
|
|
size=None
|
|
):
|
|
"""Init.
|
|
|
|
Args:
|
|
features (int): number of features
|
|
"""
|
|
super(FeatureFusionBlock, self).__init__()
|
|
|
|
self.deconv = deconv
|
|
self.align_corners = align_corners
|
|
|
|
self.groups = 1
|
|
|
|
self.expand = expand
|
|
out_features = features
|
|
if self.expand == True:
|
|
out_features = features // 2
|
|
|
|
self.out_conv = nn.Conv2d(features, out_features, kernel_size=1, stride=1, padding=0, bias=True, groups=1)
|
|
|
|
self.resConfUnit1 = ResidualConvUnit(features, activation, bn)
|
|
self.resConfUnit2 = ResidualConvUnit(features, activation, bn)
|
|
|
|
self.skip_add = nn.quantized.FloatFunctional()
|
|
|
|
self.size = size
|
|
|
|
def forward(self, *xs, size=None):
|
|
"""Forward pass.
|
|
|
|
Returns:
|
|
tensor: output
|
|
"""
|
|
output = xs[0]
|
|
|
|
if len(xs) == 2:
|
|
res = self.resConfUnit1(xs[1])
|
|
output = self.skip_add.add(output, res)
|
|
|
|
output = self.resConfUnit2(output)
|
|
|
|
if (size is None) and (self.size is None):
|
|
modifier = {"scale_factor": 2}
|
|
elif size is None:
|
|
modifier = {"size": self.size}
|
|
else:
|
|
modifier = {"size": size}
|
|
|
|
output = nn.functional.interpolate(output, **modifier, mode="bilinear", align_corners=self.align_corners)
|
|
output = self.out_conv(output)
|
|
|
|
return output
|
|
|