zxymimi23451's picture
Upload 258 files
78360e7 verified
# -*- coding: utf-8 -*-
# Copyright (c) Alibaba, Inc. and its affiliates.
import os
import cv2
import torch
import numpy as np
from . import util
from .wholebody import Wholebody, HWC3, resize_image
from PIL import Image
import onnxruntime as ort
from concurrent.futures import ThreadPoolExecutor
import threading
os.environ["KMP_DUPLICATE_LIB_OK"] = "TRUE"
def convert_to_numpy(image):
if isinstance(image, Image.Image):
image = np.array(image)
elif isinstance(image, torch.Tensor):
image = image.detach().cpu().numpy()
elif isinstance(image, np.ndarray):
image = image.copy()
else:
raise f'Unsurpport datatype{type(image)}, only surpport np.ndarray, torch.Tensor, Pillow Image.'
return image
def draw_pose(pose, H, W, use_hand=False, use_body=False, use_face=False):
bodies = pose['bodies']
faces = pose['faces']
hands = pose['hands']
candidate = bodies['candidate']
subset = bodies['subset']
canvas = np.zeros(shape=(H, W, 3), dtype=np.uint8)
if use_body:
canvas = util.draw_bodypose(canvas, candidate, subset)
if use_hand:
canvas = util.draw_handpose(canvas, hands)
if use_face:
canvas = util.draw_facepose(canvas, faces)
return canvas
class OptimizedWholebody:
"""Optimized version of Wholebody for faster serial processing"""
def __init__(self, onnx_det, onnx_pose, device='cuda:0'):
providers = ['CPUExecutionProvider'] if device == 'cpu' else ['CUDAExecutionProvider']
self.session_det = ort.InferenceSession(path_or_bytes=onnx_det, providers=providers)
self.session_pose = ort.InferenceSession(path_or_bytes=onnx_pose, providers=providers)
self.device = device
# Pre-allocate session options for better performance
self.session_det.set_providers(providers)
self.session_pose.set_providers(providers)
# Get input names once to avoid repeated lookups
self.det_input_name = self.session_det.get_inputs()[0].name
self.pose_input_name = self.session_pose.get_inputs()[0].name
self.pose_output_names = [out.name for out in self.session_pose.get_outputs()]
def __call__(self, ori_img):
from .onnxdet import inference_detector
from .onnxpose import inference_pose
det_result = inference_detector(self.session_det, ori_img)
keypoints, scores = inference_pose(self.session_pose, det_result, ori_img)
keypoints_info = np.concatenate(
(keypoints, scores[..., None]), axis=-1)
# compute neck joint
neck = np.mean(keypoints_info[:, [5, 6]], axis=1)
# neck score when visualizing pred
neck[:, 2:4] = np.logical_and(
keypoints_info[:, 5, 2:4] > 0.3,
keypoints_info[:, 6, 2:4] > 0.3).astype(int)
new_keypoints_info = np.insert(
keypoints_info, 17, neck, axis=1)
mmpose_idx = [
17, 6, 8, 10, 7, 9, 12, 14, 16, 13, 15, 2, 1, 4, 3
]
openpose_idx = [
1, 2, 3, 4, 6, 7, 8, 9, 10, 12, 13, 14, 15, 16, 17
]
new_keypoints_info[:, openpose_idx] = \
new_keypoints_info[:, mmpose_idx]
keypoints_info = new_keypoints_info
keypoints, scores = keypoints_info[
..., :2], keypoints_info[..., 2]
return keypoints, scores, det_result
class PoseAnnotator:
def __init__(self, cfg, device=None):
onnx_det = cfg['DETECTION_MODEL']
onnx_pose = cfg['POSE_MODEL']
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu") if device is None else device
self.pose_estimation = Wholebody(onnx_det, onnx_pose, device=self.device)
self.resize_size = cfg.get("RESIZE_SIZE", 1024)
self.use_body = cfg.get('USE_BODY', True)
self.use_face = cfg.get('USE_FACE', True)
self.use_hand = cfg.get('USE_HAND', True)
@torch.no_grad()
@torch.inference_mode
def forward(self, image):
image = convert_to_numpy(image)
input_image = HWC3(image[..., ::-1])
return self.process(resize_image(input_image, self.resize_size), image.shape[:2])
def process(self, ori_img, ori_shape):
ori_h, ori_w = ori_shape
ori_img = ori_img.copy()
H, W, C = ori_img.shape
with torch.no_grad():
candidate, subset, det_result = self.pose_estimation(ori_img)
nums, keys, locs = candidate.shape
candidate[..., 0] /= float(W)
candidate[..., 1] /= float(H)
body = candidate[:, :18].copy()
body = body.reshape(nums * 18, locs)
score = subset[:, :18]
for i in range(len(score)):
for j in range(len(score[i])):
if score[i][j] > 0.3:
score[i][j] = int(18 * i + j)
else:
score[i][j] = -1
un_visible = subset < 0.3
candidate[un_visible] = -1
foot = candidate[:, 18:24]
faces = candidate[:, 24:92]
hands = candidate[:, 92:113]
hands = np.vstack([hands, candidate[:, 113:]])
bodies = dict(candidate=body, subset=score)
pose = dict(bodies=bodies, hands=hands, faces=faces)
ret_data = {}
if self.use_body:
detected_map_body = draw_pose(pose, H, W, use_body=True)
detected_map_body = cv2.resize(detected_map_body[..., ::-1], (ori_w, ori_h),
interpolation=cv2.INTER_LANCZOS4 if ori_h * ori_w > H * W else cv2.INTER_AREA)
ret_data["detected_map_body"] = detected_map_body
if self.use_face:
detected_map_face = draw_pose(pose, H, W, use_face=True)
detected_map_face = cv2.resize(detected_map_face[..., ::-1], (ori_w, ori_h),
interpolation=cv2.INTER_LANCZOS4 if ori_h * ori_w > H * W else cv2.INTER_AREA)
ret_data["detected_map_face"] = detected_map_face
if self.use_body and self.use_face:
detected_map_bodyface = draw_pose(pose, H, W, use_body=True, use_face=True)
detected_map_bodyface = cv2.resize(detected_map_bodyface[..., ::-1], (ori_w, ori_h),
interpolation=cv2.INTER_LANCZOS4 if ori_h * ori_w > H * W else cv2.INTER_AREA)
ret_data["detected_map_bodyface"] = detected_map_bodyface
if self.use_hand and self.use_body and self.use_face:
detected_map_handbodyface = draw_pose(pose, H, W, use_hand=True, use_body=True, use_face=True)
detected_map_handbodyface = cv2.resize(detected_map_handbodyface[..., ::-1], (ori_w, ori_h),
interpolation=cv2.INTER_LANCZOS4 if ori_h * ori_w > H * W else cv2.INTER_AREA)
ret_data["detected_map_handbodyface"] = detected_map_handbodyface
# convert_size
if det_result.shape[0] > 0:
w_ratio, h_ratio = ori_w / W, ori_h / H
det_result[..., ::2] *= h_ratio
det_result[..., 1::2] *= w_ratio
det_result = det_result.astype(np.int32)
return ret_data, det_result
class OptimizedPoseAnnotator(PoseAnnotator):
"""Optimized version using improved Wholebody class"""
def __init__(self, cfg, device=None):
onnx_det = cfg['DETECTION_MODEL']
onnx_pose = cfg['POSE_MODEL']
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu") if device is None else device
self.pose_estimation = OptimizedWholebody(onnx_det, onnx_pose, device=self.device)
self.resize_size = cfg.get("RESIZE_SIZE", 1024)
self.use_body = cfg.get('USE_BODY', True)
self.use_face = cfg.get('USE_FACE', True)
self.use_hand = cfg.get('USE_HAND', True)
class PoseBodyFaceAnnotator(PoseAnnotator):
def __init__(self, cfg):
super().__init__(cfg)
self.use_body, self.use_face, self.use_hand = True, True, False
@torch.no_grad()
@torch.inference_mode
def forward(self, image):
ret_data, det_result = super().forward(image)
return ret_data['detected_map_bodyface']
class OptimizedPoseBodyFaceVideoAnnotator:
"""Optimized video annotator with multiple optimization strategies"""
def __init__(self, cfg, num_workers=5, chunk_size=8):
self.cfg = cfg
self.num_workers = num_workers
self.chunk_size = chunk_size
self.use_body, self.use_face, self.use_hand = True, True, False
# Initialize one annotator per worker to avoid ONNX session conflicts
self.annotators = []
for _ in range(num_workers):
annotator = OptimizedPoseAnnotator(cfg)
annotator.use_body, annotator.use_face, annotator.use_hand = True, True, False
self.annotators.append(annotator)
self._current_worker = 0
self._worker_lock = threading.Lock()
def _get_annotator(self):
"""Get next available annotator in round-robin fashion"""
with self._worker_lock:
annotator = self.annotators[self._current_worker]
self._current_worker = (self._current_worker + 1) % len(self.annotators)
return annotator
def _process_single_frame(self, frame_data):
"""Process a single frame with error handling"""
frame, frame_idx = frame_data
try:
annotator = self._get_annotator()
# Convert frame
frame = convert_to_numpy(frame)
input_image = HWC3(frame[..., ::-1])
resized_image = resize_image(input_image, annotator.resize_size)
# Process
ret_data, _ = annotator.process(resized_image, frame.shape[:2])
if 'detected_map_bodyface' in ret_data:
return frame_idx, ret_data['detected_map_bodyface']
else:
# Create empty frame if no detection
h, w = frame.shape[:2]
return frame_idx, np.zeros((h, w, 3), dtype=np.uint8)
except Exception as e:
print(f"Error processing frame {frame_idx}: {e}")
# Return empty frame on error
h, w = frame.shape[:2] if hasattr(frame, 'shape') else (480, 640)
return frame_idx, np.zeros((h, w, 3), dtype=np.uint8)
def forward(self, frames):
"""Process video frames with optimizations"""
if len(frames) == 0:
return []
# For small number of frames, use serial processing to avoid threading overhead
if len(frames) <= 4:
annotator = self.annotators[0]
ret_frames = []
for frame in frames:
frame = convert_to_numpy(frame)
input_image = HWC3(frame[..., ::-1])
resized_image = resize_image(input_image, annotator.resize_size)
ret_data, _ = annotator.process(resized_image, frame.shape[:2])
if 'detected_map_bodyface' in ret_data:
ret_frames.append(ret_data['detected_map_bodyface'])
else:
h, w = frame.shape[:2]
ret_frames.append(np.zeros((h, w, 3), dtype=np.uint8))
return ret_frames
# For larger videos, use parallel processing
frame_data = [(frame, idx) for idx, frame in enumerate(frames)]
results = [None] * len(frames)
# Process in chunks to manage memory
for chunk_start in range(0, len(frame_data), self.chunk_size * self.num_workers):
chunk_end = min(chunk_start + self.chunk_size * self.num_workers, len(frame_data))
chunk_data = frame_data[chunk_start:chunk_end]
with ThreadPoolExecutor(max_workers=self.num_workers) as executor:
chunk_results = list(executor.map(self._process_single_frame, chunk_data))
# Store results in correct order
for frame_idx, result in chunk_results:
results[frame_idx] = result
return results
# Alias for backward compatibility
class PoseBodyFaceVideoAnnotator(OptimizedPoseBodyFaceVideoAnnotator):
"""Backward compatible class name"""
def __init__(self, cfg, num_workers=2, chunk_size=8):
# Use optimized version with conservative settings
super().__init__(cfg, num_workers=num_workers, chunk_size=chunk_size)
# Keep the existing utility functions
import imageio
def save_one_video(file_path, videos, fps=8, quality=8, macro_block_size=None):
try:
video_writer = imageio.get_writer(file_path, fps=fps, codec='libx264', quality=quality, macro_block_size=macro_block_size)
for frame in videos:
video_writer.append_data(frame)
video_writer.close()
return True
except Exception as e:
print(f"Video save error: {e}")
return False
def get_frames(video_path):
frames = []
cap = cv2.VideoCapture(video_path)
fps = cap.get(cv2.CAP_PROP_FPS)
print("video fps: " + str(fps))
i = 0
while cap.isOpened():
ret, frame = cap.read()
if ret == False:
break
frames.append(frame)
i += 1
cap.release()
cv2.destroyAllWindows()
return frames, fps