Wan2GP / wan /diffusion_forcing.py
zxymimi23451's picture
Upload 258 files
78360e7 verified
import math
import os
from typing import List
from typing import Optional
from typing import Tuple
from typing import Union
import logging
import numpy as np
import torch
from diffusers.image_processor import PipelineImageInput
from diffusers.utils.torch_utils import randn_tensor
from diffusers.video_processor import VideoProcessor
from tqdm import tqdm
from .modules.model import WanModel
from .modules.t5 import T5EncoderModel
from .modules.vae import WanVAE
from wan.modules.posemb_layers import get_rotary_pos_embed
from wan.utils.utils import calculate_new_dimensions
from .utils.fm_solvers import (FlowDPMSolverMultistepScheduler,
get_sampling_sigmas, retrieve_timesteps)
from .utils.fm_solvers_unipc import FlowUniPCMultistepScheduler
class DTT2V:
def __init__(
self,
config,
checkpoint_dir,
rank=0,
model_filename = None,
model_type = None,
base_model_type = None,
save_quantized = False,
text_encoder_filename = None,
quantizeTransformer = False,
dtype = torch.bfloat16,
VAE_dtype = torch.float32,
mixed_precision_transformer = False,
):
self.device = torch.device(f"cuda")
self.config = config
self.rank = rank
self.dtype = dtype
self.num_train_timesteps = config.num_train_timesteps
self.param_dtype = config.param_dtype
self.text_encoder = T5EncoderModel(
text_len=config.text_len,
dtype=config.t5_dtype,
device=torch.device('cpu'),
checkpoint_path=text_encoder_filename,
tokenizer_path=os.path.join(checkpoint_dir, config.t5_tokenizer),
shard_fn= None)
self.vae_stride = config.vae_stride
self.patch_size = config.patch_size
self.vae = WanVAE(
vae_pth=os.path.join(checkpoint_dir, config.vae_checkpoint), dtype= VAE_dtype,
device=self.device)
logging.info(f"Creating WanModel from {model_filename[-1]}")
from mmgp import offload
# model_filename = "model.safetensors"
# model_filename = "c:/temp/diffusion_pytorch_model-00001-of-00006.safetensors"
base_config_file = f"configs/{base_model_type}.json"
forcedConfigPath = base_config_file if len(model_filename) > 1 else None
self.model = offload.fast_load_transformers_model(model_filename, modelClass=WanModel,do_quantize= quantizeTransformer, writable_tensors= False , forcedConfigPath=forcedConfigPath)
# offload.load_model_data(self.model, "recam.ckpt")
# self.model.cpu()
# dtype = torch.float16
self.model.lock_layers_dtypes(torch.float32 if mixed_precision_transformer else dtype)
offload.change_dtype(self.model, dtype, True)
# offload.save_model(self.model, "sky_reels2_diffusion_forcing_1.3B_mbf16.safetensors", config_file_path="config.json")
# offload.save_model(self.model, "sky_reels2_diffusion_forcing_720p_14B_quanto_mbf16_int8.safetensors", do_quantize= True, config_file_path="c:/temp/config _df720.json")
# offload.save_model(self.model, "rtfp16_int8.safetensors", do_quantize= "config.json")
self.model.eval().requires_grad_(False)
if save_quantized:
from wgp import save_quantized_model
save_quantized_model(self.model, model_type, model_filename[0], dtype, base_config_file)
self.scheduler = FlowUniPCMultistepScheduler()
@property
def do_classifier_free_guidance(self) -> bool:
return self._guidance_scale > 1
def encode_image(
self, image_start: PipelineImageInput, height: int, width: int, num_frames: int, tile_size = 0, causal_block_size = 0
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
# prefix_video
prefix_video = np.array(image_start.resize((width, height))).transpose(2, 0, 1)
prefix_video = torch.tensor(prefix_video).unsqueeze(1) # .to(image_embeds.dtype).unsqueeze(1)
if prefix_video.dtype == torch.uint8:
prefix_video = (prefix_video.float() / (255.0 / 2.0)) - 1.0
prefix_video = prefix_video.to(self.device)
prefix_video = [self.vae.encode(prefix_video.unsqueeze(0), tile_size = tile_size)[0]] # [(c, f, h, w)]
if prefix_video[0].shape[1] % causal_block_size != 0:
truncate_len = prefix_video[0].shape[1] % causal_block_size
print("the length of prefix video is truncated for the casual block size alignment.")
prefix_video[0] = prefix_video[0][:, : prefix_video[0].shape[1] - truncate_len]
predix_video_latent_length = prefix_video[0].shape[1]
return prefix_video, predix_video_latent_length
def prepare_latents(
self,
shape: Tuple[int],
dtype: Optional[torch.dtype] = None,
device: Optional[torch.device] = None,
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
) -> torch.Tensor:
return randn_tensor(shape, generator, device=device, dtype=dtype)
def generate_timestep_matrix(
self,
num_frames,
step_template,
base_num_frames,
ar_step=5,
num_pre_ready=0,
casual_block_size=1,
shrink_interval_with_mask=False,
) -> tuple[torch.Tensor, torch.Tensor, torch.Tensor, list[tuple]]:
step_matrix, step_index = [], []
update_mask, valid_interval = [], []
num_iterations = len(step_template) + 1
num_frames_block = num_frames // casual_block_size
base_num_frames_block = base_num_frames // casual_block_size
if base_num_frames_block < num_frames_block:
infer_step_num = len(step_template)
gen_block = base_num_frames_block
min_ar_step = infer_step_num / gen_block
assert ar_step >= min_ar_step, f"ar_step should be at least {math.ceil(min_ar_step)} in your setting"
# print(num_frames, step_template, base_num_frames, ar_step, num_pre_ready, casual_block_size, num_frames_block, base_num_frames_block)
step_template = torch.cat(
[
torch.tensor([999], dtype=torch.int64, device=step_template.device),
step_template.long(),
torch.tensor([0], dtype=torch.int64, device=step_template.device),
]
) # to handle the counter in row works starting from 1
pre_row = torch.zeros(num_frames_block, dtype=torch.long)
if num_pre_ready > 0:
pre_row[: num_pre_ready // casual_block_size] = num_iterations
while torch.all(pre_row >= (num_iterations - 1)) == False:
new_row = torch.zeros(num_frames_block, dtype=torch.long)
for i in range(num_frames_block):
if i == 0 or pre_row[i - 1] >= (
num_iterations - 1
): # the first frame or the last frame is completely denoised
new_row[i] = pre_row[i] + 1
else:
new_row[i] = new_row[i - 1] - ar_step
new_row = new_row.clamp(0, num_iterations)
update_mask.append(
(new_row != pre_row) & (new_row != num_iterations)
) # False: no need to update, True: need to update
step_index.append(new_row)
step_matrix.append(step_template[new_row])
pre_row = new_row
# for long video we split into several sequences, base_num_frames is set to the model max length (for training)
terminal_flag = base_num_frames_block
if shrink_interval_with_mask:
idx_sequence = torch.arange(num_frames_block, dtype=torch.int64)
update_mask = update_mask[0]
update_mask_idx = idx_sequence[update_mask]
last_update_idx = update_mask_idx[-1].item()
terminal_flag = last_update_idx + 1
# for i in range(0, len(update_mask)):
for curr_mask in update_mask:
if terminal_flag < num_frames_block and curr_mask[terminal_flag]:
terminal_flag += 1
valid_interval.append((max(terminal_flag - base_num_frames_block, 0), terminal_flag))
step_update_mask = torch.stack(update_mask, dim=0)
step_index = torch.stack(step_index, dim=0)
step_matrix = torch.stack(step_matrix, dim=0)
if casual_block_size > 1:
step_update_mask = step_update_mask.unsqueeze(-1).repeat(1, 1, casual_block_size).flatten(1).contiguous()
step_index = step_index.unsqueeze(-1).repeat(1, 1, casual_block_size).flatten(1).contiguous()
step_matrix = step_matrix.unsqueeze(-1).repeat(1, 1, casual_block_size).flatten(1).contiguous()
valid_interval = [(s * casual_block_size, e * casual_block_size) for s, e in valid_interval]
return step_matrix, step_index, step_update_mask, valid_interval
@torch.no_grad()
def generate(
self,
input_prompt: Union[str, List[str]],
n_prompt: Union[str, List[str]] = "",
image_start: PipelineImageInput = None,
input_video = None,
height: int = 480,
width: int = 832,
fit_into_canvas = True,
frame_num: int = 97,
sampling_steps: int = 50,
shift: float = 1.0,
guide_scale: float = 5.0,
seed: float = 0.0,
overlap_noise: int = 0,
ar_step: int = 5,
causal_block_size: int = 5,
causal_attention: bool = True,
fps: int = 24,
VAE_tile_size = 0,
joint_pass = False,
slg_layers = None,
slg_start = 0.0,
slg_end = 1.0,
callback = None,
**bbargs
):
self._interrupt = False
generator = torch.Generator(device=self.device)
generator.manual_seed(seed)
self._guidance_scale = guide_scale
frame_num = max(17, frame_num) # must match causal_block_size for value of 5
frame_num = int( round( (frame_num - 17) / 20)* 20 + 17 )
if ar_step == 0:
causal_block_size = 1
causal_attention = False
i2v_extra_kwrags = {}
prefix_video = None
predix_video_latent_length = 0
if input_video != None:
_ , _ , height, width = input_video.shape
elif image_start != None:
image_start = image_start
frame_width, frame_height = image_start.size
height, width = calculate_new_dimensions(height, width, frame_height, frame_width, fit_into_canvas)
image_start = np.array(image_start.resize((width, height))).transpose(2, 0, 1)
latent_length = (frame_num - 1) // 4 + 1
latent_height = height // 8
latent_width = width // 8
if self._interrupt:
return None
prompt_embeds = self.text_encoder([input_prompt], self.device)[0]
prompt_embeds = prompt_embeds.to(self.dtype).to(self.device)
if self.do_classifier_free_guidance:
negative_prompt_embeds = self.text_encoder([n_prompt], self.device)[0]
negative_prompt_embeds = negative_prompt_embeds.to(self.dtype).to(self.device)
if self._interrupt:
return None
self.scheduler.set_timesteps(sampling_steps, device=self.device, shift=shift)
init_timesteps = self.scheduler.timesteps
fps_embeds = [fps] #* prompt_embeds[0].shape[0]
fps_embeds = [0 if i == 16 else 1 for i in fps_embeds]
output_video = input_video
if image_start is not None or output_video is not None: # i !=0
if output_video is not None:
prefix_video = output_video.to(self.device)
else:
causal_block_size = 1
causal_attention = False
ar_step = 0
prefix_video = image_start
prefix_video = torch.tensor(prefix_video).unsqueeze(1) # .to(image_embeds.dtype).unsqueeze(1)
if prefix_video.dtype == torch.uint8:
prefix_video = (prefix_video.float() / (255.0 / 2.0)) - 1.0
prefix_video = prefix_video.to(self.device)
prefix_video = self.vae.encode(prefix_video.unsqueeze(0))[0] # [(c, f, h, w)]
predix_video_latent_length = prefix_video.shape[1]
truncate_len = predix_video_latent_length % causal_block_size
if truncate_len != 0:
if truncate_len == predix_video_latent_length:
causal_block_size = 1
causal_attention = False
ar_step = 0
else:
print("the length of prefix video is truncated for the casual block size alignment.")
predix_video_latent_length -= truncate_len
prefix_video = prefix_video[:, : predix_video_latent_length]
base_num_frames_iter = latent_length
latent_shape = [16, base_num_frames_iter, latent_height, latent_width]
latents = self.prepare_latents(
latent_shape, dtype=torch.float32, device=self.device, generator=generator
)
if prefix_video is not None:
latents[:, :predix_video_latent_length] = prefix_video.to(torch.float32)
step_matrix, _, step_update_mask, valid_interval = self.generate_timestep_matrix(
base_num_frames_iter,
init_timesteps,
base_num_frames_iter,
ar_step,
predix_video_latent_length,
causal_block_size,
)
sample_schedulers = []
for _ in range(base_num_frames_iter):
sample_scheduler = FlowUniPCMultistepScheduler(
num_train_timesteps=1000, shift=1, use_dynamic_shifting=False
)
sample_scheduler.set_timesteps(sampling_steps, device=self.device, shift=shift)
sample_schedulers.append(sample_scheduler)
sample_schedulers_counter = [0] * base_num_frames_iter
updated_num_steps= len(step_matrix)
if callback != None:
callback(-1, None, True, override_num_inference_steps = updated_num_steps)
if self.model.enable_cache:
x_count = 2 if self.do_classifier_free_guidance else 1
self.model.previous_residual = [None] * x_count
time_steps_comb = []
self.model.num_steps = updated_num_steps
for i, timestep_i in enumerate(step_matrix):
valid_interval_start, valid_interval_end = valid_interval[i]
timestep = timestep_i[None, valid_interval_start:valid_interval_end].clone()
if overlap_noise > 0 and valid_interval_start < predix_video_latent_length:
timestep[:, valid_interval_start:predix_video_latent_length] = overlap_noise
time_steps_comb.append(timestep)
self.model.compute_teacache_threshold(self.model.cache_start_step, time_steps_comb, self.model.teacache_multiplier)
del time_steps_comb
from mmgp import offload
freqs = get_rotary_pos_embed(latents.shape[1 :], enable_RIFLEx= False)
kwrags = {
"freqs" :freqs,
"fps" : fps_embeds,
"causal_block_size" : causal_block_size,
"causal_attention" : causal_attention,
"callback" : callback,
"pipeline" : self,
}
kwrags.update(i2v_extra_kwrags)
for i, timestep_i in enumerate(tqdm(step_matrix)):
kwrags["slg_layers"] = slg_layers if int(slg_start * updated_num_steps) <= i < int(slg_end * updated_num_steps) else None
offload.set_step_no_for_lora(self.model, i)
update_mask_i = step_update_mask[i]
valid_interval_start, valid_interval_end = valid_interval[i]
timestep = timestep_i[None, valid_interval_start:valid_interval_end].clone()
latent_model_input = latents[:, valid_interval_start:valid_interval_end, :, :].clone()
if overlap_noise > 0 and valid_interval_start < predix_video_latent_length:
noise_factor = 0.001 * overlap_noise
timestep_for_noised_condition = overlap_noise
latent_model_input[:, valid_interval_start:predix_video_latent_length] = (
latent_model_input[:, valid_interval_start:predix_video_latent_length]
* (1.0 - noise_factor)
+ torch.randn_like(
latent_model_input[:, valid_interval_start:predix_video_latent_length]
)
* noise_factor
)
timestep[:, valid_interval_start:predix_video_latent_length] = timestep_for_noised_condition
kwrags.update({
"t" : timestep,
"current_step" : i,
})
# with torch.autocast(device_type="cuda"):
if True:
if not self.do_classifier_free_guidance:
noise_pred = self.model(
x=[latent_model_input],
context=[prompt_embeds],
**kwrags,
)[0]
if self._interrupt:
return None
noise_pred= noise_pred.to(torch.float32)
else:
if joint_pass:
noise_pred_cond, noise_pred_uncond = self.model(
x=[latent_model_input, latent_model_input],
context= [prompt_embeds, negative_prompt_embeds],
**kwrags,
)
if self._interrupt:
return None
else:
noise_pred_cond = self.model(
x=[latent_model_input],
x_id=0,
context=[prompt_embeds],
**kwrags,
)[0]
if self._interrupt:
return None
noise_pred_uncond = self.model(
x=[latent_model_input],
x_id=1,
context=[negative_prompt_embeds],
**kwrags,
)[0]
if self._interrupt:
return None
noise_pred = noise_pred_uncond + guide_scale * (noise_pred_cond - noise_pred_uncond)
del noise_pred_cond, noise_pred_uncond
for idx in range(valid_interval_start, valid_interval_end):
if update_mask_i[idx].item():
latents[:, idx] = sample_schedulers[idx].step(
noise_pred[:, idx - valid_interval_start],
timestep_i[idx],
latents[:, idx],
return_dict=False,
generator=generator,
)[0]
sample_schedulers_counter[idx] += 1
if callback is not None:
callback(i, latents.squeeze(0), False)
x0 = latents.unsqueeze(0)
videos = [self.vae.decode(x0, tile_size= VAE_tile_size)[0]]
output_video = videos[0].clamp(-1, 1).cpu() # c, f, h, w
return output_video