"""Mask Mod for Image2Video""" from math import floor import torch from torch import Tensor from functools import lru_cache from typing import Optional, List import torch from torch.nn.attention.flex_attention import ( create_block_mask, ) @lru_cache def create_block_mask_cached(score_mod, B, H, M, N, device="cuda", _compile=False): block_mask = create_block_mask(score_mod, B, H, M, N, device=device, _compile=_compile) return block_mask def generate_temporal_head_mask_mod(context_length: int = 226, prompt_length: int = 226, num_frames: int = 13, token_per_frame: int = 1350, mul: int = 2): def round_to_multiple(idx): return floor(idx / 128) * 128 real_length = num_frames * token_per_frame + prompt_length def temporal_mask_mod(b, h, q_idx, kv_idx): real_mask = (kv_idx < real_length) & (q_idx < real_length) fake_mask = (kv_idx >= real_length) & (q_idx >= real_length) two_frame = round_to_multiple(mul * token_per_frame) temporal_head_mask = (torch.abs(q_idx - kv_idx) < two_frame) text_column_mask = (num_frames * token_per_frame <= kv_idx) & (kv_idx < real_length) text_row_mask = (num_frames * token_per_frame <= q_idx) & (q_idx < real_length) video_mask = temporal_head_mask | text_column_mask | text_row_mask real_mask = real_mask & video_mask return real_mask | fake_mask return temporal_mask_mod