# -*- coding: utf-8 -*- # Copyright (c) Alibaba, Inc. and its affiliates. import numpy as np import torch from einops import rearrange from PIL import Image def convert_to_numpy(image): if isinstance(image, Image.Image): image = np.array(image) elif isinstance(image, torch.Tensor): image = image.detach().cpu().numpy() elif isinstance(image, np.ndarray): image = image.copy() else: raise f'Unsurpport datatype{type(image)}, only surpport np.ndarray, torch.Tensor, Pillow Image.' return image class DepthV2Annotator: def __init__(self, cfg, device=None): from .dpt import DepthAnythingV2 # Model configurations for different variants self.model_configs = { 'vits': {'encoder': 'vits', 'features': 64, 'out_channels': [48, 96, 192, 384]}, 'vitb': {'encoder': 'vitb', 'features': 128, 'out_channels': [96, 192, 384, 768]}, 'vitl': {'encoder': 'vitl', 'features': 256, 'out_channels': [256, 512, 1024, 1024]}, 'vitg': {'encoder': 'vitg', 'features': 384, 'out_channels': [1536, 1536, 1536, 1536]} } # Get model variant from config, default to 'vitl' if not specified model_variant = cfg.get('MODEL_VARIANT', 'vitl') if model_variant not in self.model_configs: raise ValueError(f"Invalid model variant '{model_variant}'. Must be one of: {list(self.model_configs.keys())}") pretrained_model = cfg['PRETRAINED_MODEL'] self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu") if device is None else device # Get configuration for the selected model variant config = self.model_configs[model_variant] # Initialize model with the appropriate configuration self.model = DepthAnythingV2( encoder=config['encoder'], features=config['features'], out_channels=config['out_channels'] ).to(self.device) self.model.load_state_dict( torch.load( pretrained_model, map_location=self.device, weights_only=True ) ) self.model.eval() @torch.inference_mode() @torch.autocast('cuda', enabled=False) def forward(self, image): image = convert_to_numpy(image) depth = self.model.infer_image(image) depth_pt = depth.copy() depth_pt -= np.min(depth_pt) depth_pt /= np.max(depth_pt) depth_image = (depth_pt * 255.0).clip(0, 255).astype(np.uint8) depth_image = depth_image[..., np.newaxis] depth_image = np.repeat(depth_image, 3, axis=2) return depth_image class DepthV2VideoAnnotator(DepthV2Annotator): def forward(self, frames): ret_frames = [] for frame in frames: anno_frame = super().forward(np.array(frame)) ret_frames.append(anno_frame) return ret_frames