# -*- coding: utf-8 -*- # Copyright (c) Alibaba, Inc. and its affiliates. import numpy as np import torch from einops import rearrange from PIL import Image import cv2 def convert_to_numpy(image): if isinstance(image, Image.Image): image = np.array(image) elif isinstance(image, torch.Tensor): image = image.detach().cpu().numpy() elif isinstance(image, np.ndarray): image = image.copy() else: raise f'Unsurpport datatype{type(image)}, only surpport np.ndarray, torch.Tensor, Pillow Image.' return image def resize_image(input_image, resolution): H, W, C = input_image.shape H = float(H) W = float(W) k = float(resolution) / min(H, W) H *= k W *= k H = int(np.round(H / 64.0)) * 64 W = int(np.round(W / 64.0)) * 64 img = cv2.resize( input_image, (W, H), interpolation=cv2.INTER_LANCZOS4 if k > 1 else cv2.INTER_AREA) return img, k def resize_image_ori(h, w, image, k): img = cv2.resize( image, (w, h), interpolation=cv2.INTER_LANCZOS4 if k > 1 else cv2.INTER_AREA) return img class DepthAnnotator: def __init__(self, cfg, device=None): from .api import MiDaSInference pretrained_model = cfg['PRETRAINED_MODEL'] self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu") if device is None else device self.model = MiDaSInference(model_type='dpt_hybrid', model_path=pretrained_model).to(self.device) self.a = cfg.get('A', np.pi * 2.0) self.bg_th = cfg.get('BG_TH', 0.1) @torch.no_grad() @torch.inference_mode() @torch.autocast('cuda', enabled=False) def forward(self, image): image = convert_to_numpy(image) image_depth = image h, w, c = image.shape image_depth, k = resize_image(image_depth, 1024 if min(h, w) > 1024 else min(h, w)) image_depth = torch.from_numpy(image_depth).float().to(self.device) image_depth = image_depth / 127.5 - 1.0 image_depth = rearrange(image_depth, 'h w c -> 1 c h w') depth = self.model(image_depth)[0] depth_pt = depth.clone() depth_pt -= torch.min(depth_pt) depth_pt /= torch.max(depth_pt) depth_pt = depth_pt.cpu().numpy() depth_image = (depth_pt * 255.0).clip(0, 255).astype(np.uint8) depth_image = depth_image[..., None].repeat(3, 2) depth_image = resize_image_ori(h, w, depth_image, k) return depth_image class DepthVideoAnnotator(DepthAnnotator): def forward(self, frames): ret_frames = [] for frame in frames: anno_frame = super().forward(np.array(frame)) ret_frames.append(anno_frame) return ret_frames