# Copyright 2024-2025 The Alibaba Wan Team Authors. All rights reserved. import gc import logging import math import os import random import sys import types from contextlib import contextmanager from functools import partial import json import numpy as np import torch import torch.cuda.amp as amp import torch.distributed as dist import torchvision.transforms.functional as TF from tqdm import tqdm from .distributed.fsdp import shard_model from .modules.clip import CLIPModel from .modules.model import WanModel from .modules.t5 import T5EncoderModel from .modules.vae import WanVAE from .utils.fm_solvers import (FlowDPMSolverMultistepScheduler, get_sampling_sigmas, retrieve_timesteps) from .utils.fm_solvers_unipc import FlowUniPCMultistepScheduler from wan.modules.posemb_layers import get_rotary_pos_embed from wan.utils.utils import resize_lanczos, calculate_new_dimensions def optimized_scale(positive_flat, negative_flat): # Calculate dot production dot_product = torch.sum(positive_flat * negative_flat, dim=1, keepdim=True) # Squared norm of uncondition squared_norm = torch.sum(negative_flat ** 2, dim=1, keepdim=True) + 1e-8 # st_star = v_cond^T * v_uncond / ||v_uncond||^2 st_star = dot_product / squared_norm return st_star class WanI2V: def __init__( self, config, checkpoint_dir, model_filename = None, model_type = None, base_model_type= None, text_encoder_filename= None, quantizeTransformer = False, dtype = torch.bfloat16, VAE_dtype = torch.float32, save_quantized = False, mixed_precision_transformer = False ): self.device = torch.device(f"cuda") self.config = config self.dtype = dtype self.VAE_dtype = VAE_dtype self.num_train_timesteps = config.num_train_timesteps self.param_dtype = config.param_dtype # shard_fn = partial(shard_model, device_id=device_id) self.text_encoder = T5EncoderModel( text_len=config.text_len, dtype=config.t5_dtype, device=torch.device('cpu'), checkpoint_path=text_encoder_filename, tokenizer_path=os.path.join(checkpoint_dir, config.t5_tokenizer), shard_fn=None, ) self.vae_stride = config.vae_stride self.patch_size = config.patch_size self.vae = WanVAE( vae_pth=os.path.join(checkpoint_dir, config.vae_checkpoint), dtype = VAE_dtype, device=self.device) self.clip = CLIPModel( dtype=config.clip_dtype, device=self.device, checkpoint_path=os.path.join(checkpoint_dir , config.clip_checkpoint), tokenizer_path=os.path.join(checkpoint_dir , config.clip_tokenizer)) logging.info(f"Creating WanModel from {model_filename[-1]}") from mmgp import offload # fantasy = torch.load("c:/temp/fantasy.ckpt") # proj_model = fantasy["proj_model"] # audio_processor = fantasy["audio_processor"] # offload.safetensors2.torch_write_file(proj_model, "proj_model.safetensors") # offload.safetensors2.torch_write_file(audio_processor, "audio_processor.safetensors") # for k,v in audio_processor.items(): # audio_processor[k] = v.to(torch.bfloat16) # with open("fantasy_config.json", "r", encoding="utf-8") as reader: # config_text = reader.read() # config_json = json.loads(config_text) # offload.safetensors2.torch_write_file(audio_processor, "audio_processor_bf16.safetensors", config=config_json) # model_filename = [model_filename, "audio_processor_bf16.safetensors"] # model_filename = "c:/temp/i2v480p/diffusion_pytorch_model-00001-of-00007.safetensors" # dtype = torch.float16 base_config_file = f"configs/{base_model_type}.json" forcedConfigPath = base_config_file if len(model_filename) > 1 else None self.model = offload.fast_load_transformers_model(model_filename, modelClass=WanModel,do_quantize= quantizeTransformer and not save_quantized, writable_tensors= False, defaultConfigPath= base_config_file, forcedConfigPath= forcedConfigPath) self.model.lock_layers_dtypes(torch.float32 if mixed_precision_transformer else dtype) offload.change_dtype(self.model, dtype, True) # offload.save_model(self.model, "wan2.1_image2video_720p_14B_mbf16.safetensors", config_file_path="c:/temp/i2v720p/config.json") # offload.save_model(self.model, "wan2.1_image2video_720p_14B_quanto_mbf16_int8.safetensors",do_quantize=True, config_file_path="c:/temp/i2v720p/config.json") # offload.save_model(self.model, "wan2.1_image2video_720p_14B_quanto_mfp16_int8.safetensors",do_quantize=True, config_file_path="c:/temp/i2v720p/config.json") # offload.save_model(self.model, "wan2.1_Fun_InP_1.3B_bf16_bis.safetensors") self.model.eval().requires_grad_(False) if save_quantized: from wgp import save_quantized_model save_quantized_model(self.model, model_type, model_filename[0], dtype, base_config_file) self.sample_neg_prompt = config.sample_neg_prompt def generate(self, input_prompt, image_start, image_end = None, height =720, width = 1280, fit_into_canvas = True, frame_num=81, shift=5.0, sample_solver='unipc', sampling_steps=40, guide_scale=5.0, n_prompt="", seed=-1, callback = None, enable_RIFLEx = False, VAE_tile_size= 0, joint_pass = False, slg_layers = None, slg_start = 0.0, slg_end = 1.0, cfg_star_switch = True, cfg_zero_step = 5, audio_scale=None, audio_cfg_scale=None, audio_proj=None, audio_context_lens=None, model_filename = None, **bbargs ): r""" Generates video frames from input image and text prompt using diffusion process. Args: input_prompt (`str`): Text prompt for content generation. image_start (PIL.Image.Image): Input image tensor. Shape: [3, H, W] max_area (`int`, *optional*, defaults to 720*1280): Maximum pixel area for latent space calculation. Controls video resolution scaling frame_num (`int`, *optional*, defaults to 81): How many frames to sample from a video. The number should be 4n+1 shift (`float`, *optional*, defaults to 5.0): Noise schedule shift parameter. Affects temporal dynamics [NOTE]: If you want to generate a 480p video, it is recommended to set the shift value to 3.0. sample_solver (`str`, *optional*, defaults to 'unipc'): Solver used to sample the video. sampling_steps (`int`, *optional*, defaults to 40): Number of diffusion sampling steps. Higher values improve quality but slow generation guide_scale (`float`, *optional*, defaults 5.0): Classifier-free guidance scale. Controls prompt adherence vs. creativity n_prompt (`str`, *optional*, defaults to ""): Negative prompt for content exclusion. If not given, use `config.sample_neg_prompt` seed (`int`, *optional*, defaults to -1): Random seed for noise generation. If -1, use random seed offload_model (`bool`, *optional*, defaults to True): If True, offloads models to CPU during generation to save VRAM Returns: torch.Tensor: Generated video frames tensor. Dimensions: (C, N H, W) where: - C: Color channels (3 for RGB) - N: Number of frames (81) - H: Frame height (from max_area) - W: Frame width from max_area) """ add_frames_for_end_image = "image2video" in model_filename or "fantasy" in model_filename image_start = TF.to_tensor(image_start) lat_frames = int((frame_num - 1) // self.vae_stride[0] + 1) any_end_frame = image_end !=None if any_end_frame: any_end_frame = True image_end = TF.to_tensor(image_end) if add_frames_for_end_image: frame_num +=1 lat_frames = int((frame_num - 2) // self.vae_stride[0] + 2) h, w = image_start.shape[1:] h, w = calculate_new_dimensions(height, width, h, w, fit_into_canvas) lat_h = round( h // self.vae_stride[1] // self.patch_size[1] * self.patch_size[1]) lat_w = round( w // self.vae_stride[2] // self.patch_size[2] * self.patch_size[2]) h = lat_h * self.vae_stride[1] w = lat_w * self.vae_stride[2] clip_image_size = self.clip.model.image_size img_interpolated = resize_lanczos(image_start, h, w).sub_(0.5).div_(0.5).unsqueeze(0).transpose(0,1).to(self.device) #, self.dtype image_start = resize_lanczos(image_start, clip_image_size, clip_image_size) image_start = image_start.sub_(0.5).div_(0.5).to(self.device) #, self.dtype if image_end!= None: img_interpolated2 = resize_lanczos(image_end, h, w).sub_(0.5).div_(0.5).unsqueeze(0).transpose(0,1).to(self.device) #, self.dtype image_end = resize_lanczos(image_end, clip_image_size, clip_image_size) image_end = image_end.sub_(0.5).div_(0.5).to(self.device) #, self.dtype max_seq_len = lat_frames * lat_h * lat_w // ( self.patch_size[1] * self.patch_size[2]) seed = seed if seed >= 0 else random.randint(0, sys.maxsize) seed_g = torch.Generator(device=self.device) seed_g.manual_seed(seed) noise = torch.randn(16, lat_frames, lat_h, lat_w, dtype=torch.float32, generator=seed_g, device=self.device) msk = torch.ones(1, frame_num, lat_h, lat_w, device=self.device) if any_end_frame: msk[:, 1: -1] = 0 if add_frames_for_end_image: msk = torch.concat([ torch.repeat_interleave(msk[:, 0:1], repeats=4, dim=1), msk[:, 1:-1], torch.repeat_interleave(msk[:, -1:], repeats=4, dim=1) ], dim=1) else: msk = torch.concat([ torch.repeat_interleave(msk[:, 0:1], repeats=4, dim=1), msk[:, 1:] ], dim=1) else: msk[:, 1:] = 0 msk = torch.concat([ torch.repeat_interleave(msk[:, 0:1], repeats=4, dim=1), msk[:, 1:] ], dim=1) msk = msk.view(1, msk.shape[1] // 4, 4, lat_h, lat_w) msk = msk.transpose(1, 2)[0] if n_prompt == "": n_prompt = self.sample_neg_prompt if self._interrupt: return None # preprocess context = self.text_encoder([input_prompt], self.device)[0] context_null = self.text_encoder([n_prompt], self.device)[0] context = context.to(self.dtype) context_null = context_null.to(self.dtype) if self._interrupt: return None clip_context = self.clip.visual([image_start[:, None, :, :]]) from mmgp import offload offload.last_offload_obj.unload_all() if any_end_frame: mean2 = 0 enc= torch.concat([ img_interpolated, torch.full( (3, frame_num-2, h, w), mean2, device=self.device, dtype= self.VAE_dtype), img_interpolated2, ], dim=1).to(self.device) else: enc= torch.concat([ img_interpolated, torch.zeros(3, frame_num-1, h, w, device=self.device, dtype= self.VAE_dtype) ], dim=1).to(self.device) image_start, image_end, img_interpolated, img_interpolated2 = None, None, None, None lat_y = self.vae.encode([enc], VAE_tile_size, any_end_frame= any_end_frame and add_frames_for_end_image)[0] y = torch.concat([msk, lat_y]) lat_y = None # evaluation mode if sample_solver == 'unipc': sample_scheduler = FlowUniPCMultistepScheduler( num_train_timesteps=self.num_train_timesteps, shift=1, use_dynamic_shifting=False) sample_scheduler.set_timesteps( sampling_steps, device=self.device, shift=shift) timesteps = sample_scheduler.timesteps elif sample_solver == 'dpm++': sample_scheduler = FlowDPMSolverMultistepScheduler( num_train_timesteps=self.num_train_timesteps, shift=1, use_dynamic_shifting=False) sampling_sigmas = get_sampling_sigmas(sampling_steps, shift) timesteps, _ = retrieve_timesteps( sample_scheduler, device=self.device, sigmas=sampling_sigmas) else: raise NotImplementedError("Unsupported solver.") # sample videos latent = noise batch_size = 1 freqs = get_rotary_pos_embed(latent.shape[1:], enable_RIFLEx= enable_RIFLEx) kwargs = { 'clip_fea': clip_context, 'y': y, 'freqs' : freqs, 'pipeline' : self, 'callback' : callback } if audio_proj != None: kwargs.update({ "audio_proj": audio_proj.to(self.dtype), "audio_context_lens": audio_context_lens, }) if self.model.enable_cache: self.model.previous_residual = [None] * (3 if audio_cfg_scale !=None else 2) self.model.compute_teacache_threshold(self.model.cache_start_step, timesteps, self.model.teacache_multiplier) # self.model.to(self.device) if callback != None: callback(-1, None, True) latent = latent.to(self.device) for i, t in enumerate(tqdm(timesteps)): offload.set_step_no_for_lora(self.model, i) kwargs["slg_layers"] = slg_layers if int(slg_start * sampling_steps) <= i < int(slg_end * sampling_steps) else None latent_model_input = latent timestep = [t] timestep = torch.stack(timestep).to(self.device) kwargs.update({ 't' :timestep, 'current_step' :i, }) if guide_scale == 1: noise_pred = self.model( [latent_model_input], context=[context], audio_scale = None if audio_scale == None else [audio_scale], x_id=0, **kwargs, )[0] if self._interrupt: return None elif joint_pass: if audio_proj == None: noise_pred_cond, noise_pred_uncond = self.model( [latent_model_input, latent_model_input], context=[context, context_null], **kwargs) else: noise_pred_cond, noise_pred_noaudio, noise_pred_uncond = self.model( [latent_model_input, latent_model_input, latent_model_input], context=[context, context, context_null], audio_scale = [audio_scale, None, None ], **kwargs) if self._interrupt: return None else: noise_pred_cond = self.model( [latent_model_input], context=[context], audio_scale = None if audio_scale == None else [audio_scale], x_id=0, **kwargs, )[0] if self._interrupt: return None if audio_proj != None: noise_pred_noaudio = self.model( [latent_model_input], x_id=1, context=[context], **kwargs, )[0] if self._interrupt: return None noise_pred_uncond = self.model( [latent_model_input], x_id=1 if audio_scale == None else 2, context=[context_null], **kwargs, )[0] if self._interrupt: return None del latent_model_input if guide_scale > 1: # CFG Zero *. Thanks to https://github.com/WeichenFan/CFG-Zero-star/ if cfg_star_switch: positive_flat = noise_pred_cond.view(batch_size, -1) negative_flat = noise_pred_uncond.view(batch_size, -1) alpha = optimized_scale(positive_flat,negative_flat) alpha = alpha.view(batch_size, 1, 1, 1) if (i <= cfg_zero_step): noise_pred = noise_pred_cond*0. # it would be faster not to compute noise_pred... else: noise_pred_uncond *= alpha if audio_scale == None: noise_pred = noise_pred_uncond + guide_scale * (noise_pred_cond - noise_pred_uncond) else: noise_pred = noise_pred_uncond + guide_scale * (noise_pred_noaudio - noise_pred_uncond) + audio_cfg_scale * (noise_pred_cond - noise_pred_noaudio) noise_pred_uncond, noise_pred_noaudio = None, None temp_x0 = sample_scheduler.step( noise_pred.unsqueeze(0), t, latent.unsqueeze(0), return_dict=False, generator=seed_g)[0] latent = temp_x0.squeeze(0) del temp_x0 del timestep if callback is not None: callback(i, latent, False) x0 = [latent] video = self.vae.decode(x0, VAE_tile_size, any_end_frame= any_end_frame and add_frames_for_end_image)[0] if any_end_frame and add_frames_for_end_image: # video[:, -1:] = img_interpolated2 video = video[:, :-1] del noise, latent del sample_scheduler return video