# Copyright (c) 2024-2025 Bytedance Ltd. and/or its affiliates # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import List, Optional, Tuple, Union import torch # Refer to https://github.com/Angtian/VoGE/blob/main/VoGE/Utils.py def ind_sel(target: torch.Tensor, ind: torch.Tensor, dim: int = 1): """ :param target: [... (can be k or 1), n > M, ...] :param ind: [... (k), M] :param dim: dim to apply index on :return: sel_target [... (k), M, ...] """ assert ( len(ind.shape) > dim ), "Index must have the target dim, but get dim: %d, ind shape: %s" % (dim, str(ind.shape)) target = target.expand( *tuple( [ind.shape[k] if target.shape[k] == 1 else -1 for k in range(dim)] + [ -1, ] * (len(target.shape) - dim) ) ) ind_pad = ind if len(target.shape) > dim + 1: for _ in range(len(target.shape) - (dim + 1)): ind_pad = ind_pad.unsqueeze(-1) ind_pad = ind_pad.expand(*(-1,) * (dim + 1), *target.shape[(dim + 1) : :]) return torch.gather(target, dim=dim, index=ind_pad) def merge_final(vert_attr: torch.Tensor, weight: torch.Tensor, vert_assign: torch.Tensor): """ :param vert_attr: [n, d] or [b, n, d] color or feature of each vertex :param weight: [b(optional), w, h, M] weight of selected vertices :param vert_assign: [b(optional), w, h, M] selective index :return: """ target_dim = len(vert_assign.shape) - 1 if len(vert_attr.shape) == 2: assert vert_attr.shape[0] > vert_assign.max() # [n, d] ind: [b(optional), w, h, M]-> [b(optional), w, h, M, d] sel_attr = ind_sel( vert_attr[(None,) * target_dim], vert_assign.type(torch.long), dim=target_dim ) else: assert vert_attr.shape[1] > vert_assign.max() sel_attr = ind_sel( vert_attr[(slice(None),) + (None,)*(target_dim-1)], vert_assign.type(torch.long), dim=target_dim ) # [b(optional), w, h, M] final_attr = torch.sum(sel_attr * weight.unsqueeze(-1), dim=-2) return final_attr def patch_motion( tracks: torch.FloatTensor, # (B, T, N, 4) vid: torch.FloatTensor, # (C, T, H, W) temperature: float = 220.0, training: bool = True, tail_dropout: float = 0.2, vae_divide: tuple = (4, 16), topk: int = 2, ): with torch.no_grad(): _, T, H, W = vid.shape N = tracks.shape[2] _, tracks, visible = torch.split( tracks, [1, 2, 1], dim=-1 ) # (B, T, N, 2) | (B, T, N, 1) tracks_n = tracks / torch.tensor([W / min(H, W), H / min(H, W)], device=tracks.device) tracks_n = tracks_n.clamp(-1, 1) visible = visible.clamp(0, 1) if tail_dropout > 0 and training: TT = visible.shape[1] rrange = torch.arange(TT, device=visible.device, dtype=visible.dtype)[ None, :, None, None ] rand_nn = torch.rand_like(visible[:, :1]) rand_rr = torch.rand_like(visible[:, :1]) * (TT - 1) visible = visible * ( (rand_nn > tail_dropout).type_as(visible) + (rrange < rand_rr).type_as(visible) ).clamp(0, 1) xx = torch.linspace(-W / min(H, W), W / min(H, W), W) yy = torch.linspace(-H / min(H, W), H / min(H, W), H) grid = torch.stack(torch.meshgrid(yy, xx, indexing="ij")[::-1], dim=-1).to( tracks.device ) tracks_pad = tracks[:, 1:] visible_pad = visible[:, 1:] visible_align = visible_pad.view(T - 1, 4, *visible_pad.shape[2:]).sum(1) tracks_align = (tracks_pad * visible_pad).view(T - 1, 4, *tracks_pad.shape[2:]).sum( 1 ) / (visible_align + 1e-5) dist_ = ( (tracks_align[:, None, None] - grid[None, :, :, None]).pow(2).sum(-1) ) # T, H, W, N weight = torch.exp(-dist_ * temperature) * visible_align.clamp(0, 1).view( T - 1, 1, 1, N ) vert_weight, vert_index = torch.topk( weight, k=min(topk, weight.shape[-1]), dim=-1 ) grid_mode = "bilinear" point_feature = torch.nn.functional.grid_sample( vid[vae_divide[0]:].permute(1, 0, 2, 3)[:1], tracks_n[:, :1].type(vid.dtype), mode=grid_mode, padding_mode="zeros", align_corners=None, ) point_feature = point_feature.squeeze(0).squeeze(1).permute(1, 0) # N, C=16 out_feature = merge_final(point_feature, vert_weight, vert_index).permute(3, 0, 1, 2) # T - 1, H, W, C => C, T - 1, H, W out_weight = vert_weight.sum(-1) # T - 1, H, W # out feature -> already soft weighted mix_feature = out_feature + vid[vae_divide[0]:, 1:] * (1 - out_weight.clamp(0, 1)) out_feature_full = torch.cat([vid[vae_divide[0]:, :1], mix_feature], dim=1) # C, T, H, W out_mask_full = torch.cat([torch.ones_like(out_weight[:1]), out_weight], dim=0) # T, H, W return torch.cat([out_mask_full[None].expand(vae_divide[0], -1, -1, -1), out_feature_full], dim=0)