""" The following code is copied from https://github.com/modelscope/DiffSynth-Studio/blob/main/diffsynth/schedulers/flow_match.py """ import torch class FlowMatchScheduler(): def __init__(self, num_inference_steps=100, num_train_timesteps=1000, shift=3.0, sigma_max=1.0, sigma_min=0.003 / 1.002, inverse_timesteps=False, extra_one_step=False, reverse_sigmas=False): self.num_train_timesteps = num_train_timesteps self.shift = shift self.sigma_max = sigma_max self.sigma_min = sigma_min self.inverse_timesteps = inverse_timesteps self.extra_one_step = extra_one_step self.reverse_sigmas = reverse_sigmas self.set_timesteps(num_inference_steps) def set_timesteps(self, num_inference_steps=100, denoising_strength=1.0, training=False): sigma_start = self.sigma_min + \ (self.sigma_max - self.sigma_min) * denoising_strength if self.extra_one_step: self.sigmas = torch.linspace( sigma_start, self.sigma_min, num_inference_steps + 1)[:-1] else: self.sigmas = torch.linspace( sigma_start, self.sigma_min, num_inference_steps) if self.inverse_timesteps: self.sigmas = torch.flip(self.sigmas, dims=[0]) self.sigmas = self.shift * self.sigmas / \ (1 + (self.shift - 1) * self.sigmas) if self.reverse_sigmas: self.sigmas = 1 - self.sigmas self.timesteps = self.sigmas * self.num_train_timesteps if training: x = self.timesteps y = torch.exp(-2 * ((x - num_inference_steps / 2) / num_inference_steps) ** 2) y_shifted = y - y.min() bsmntw_weighing = y_shifted * \ (num_inference_steps / y_shifted.sum()) self.linear_timesteps_weights = bsmntw_weighing def step(self, model_output, timestep, sample, to_final=False): self.sigmas = self.sigmas.to(model_output.device) self.timesteps = self.timesteps.to(model_output.device) timestep_id = torch.argmin( (self.timesteps - timestep).abs(), dim=0) sigma = self.sigmas[timestep_id].reshape(-1, 1, 1, 1) if to_final or (timestep_id + 1 >= len(self.timesteps)).any(): sigma_ = 1 if ( self.inverse_timesteps or self.reverse_sigmas) else 0 else: sigma_ = self.sigmas[timestep_id + 1].reshape(-1, 1, 1, 1) prev_sample = sample + model_output * (sigma_ - sigma) return prev_sample def add_noise(self, original_samples, noise, timestep): """ Diffusion forward corruption process. Input: - clean_latent: the clean latent with shape [B, C, H, W] - noise: the noise with shape [B, C, H, W] - timestep: the timestep with shape [B] Output: the corrupted latent with shape [B, C, H, W] """ self.sigmas = self.sigmas.to(noise.device) self.timesteps = self.timesteps.to(noise.device) timestep_id = torch.argmin( (self.timesteps.unsqueeze(0) - timestep.unsqueeze(1)).abs(), dim=1) sigma = self.sigmas[timestep_id].reshape(-1, 1, 1, 1) sample = (1 - sigma) * original_samples + sigma * noise return sample.type_as(noise) def training_target(self, sample, noise, timestep): target = noise - sample return target def training_weight(self, timestep): timestep_id = torch.argmin( (self.timesteps - timestep.to(self.timesteps.device)).abs()) weights = self.linear_timesteps_weights[timestep_id] return weights