import torch from einops import rearrange import numpy as np import json class Camera(object): def __init__(self, c2w): c2w_mat = np.array(c2w).reshape(4, 4) self.c2w_mat = c2w_mat self.w2c_mat = np.linalg.inv(c2w_mat) def parse_matrix(matrix_str): rows = matrix_str.strip().split('] [') matrix = [] for row in rows: row = row.replace('[', '').replace(']', '') matrix.append(list(map(float, row.split()))) return np.array(matrix) def get_relative_pose(cam_params): abs_w2cs = [cam_param.w2c_mat for cam_param in cam_params] abs_c2ws = [cam_param.c2w_mat for cam_param in cam_params] cam_to_origin = 0 target_cam_c2w = np.array([ [1, 0, 0, 0], [0, 1, 0, -cam_to_origin], [0, 0, 1, 0], [0, 0, 0, 1] ]) abs2rel = target_cam_c2w @ abs_w2cs[0] ret_poses = [target_cam_c2w, ] + [abs2rel @ abs_c2w for abs_c2w in abs_c2ws[1:]] ret_poses = np.array(ret_poses, dtype=np.float32) return ret_poses def get_camera_embedding(cam_type, num_frames=81): # load camera tgt_camera_path = "wan/camera_extrinsics.json" with open(tgt_camera_path, 'r') as file: cam_data = json.load(file) cam_idx = list(range(num_frames))[::4] traj = [parse_matrix(cam_data[f"frame{idx}"][f"cam{int(cam_type):02d}"]) for idx in cam_idx] traj = np.stack(traj).transpose(0, 2, 1) c2ws = [] for c2w in traj: c2w = c2w[:, [1, 2, 0, 3]] c2w[:3, 1] *= -1. c2w[:3, 3] /= 100 c2ws.append(c2w) tgt_cam_params = [Camera(cam_param) for cam_param in c2ws] relative_poses = [] for i in range(len(tgt_cam_params)): relative_pose = get_relative_pose([tgt_cam_params[0], tgt_cam_params[i]]) relative_poses.append(torch.as_tensor(relative_pose)[:,:3,:][1]) pose_embedding = torch.stack(relative_poses, dim=0) # 21x3x4 pose_embedding = rearrange(pose_embedding, 'b c d -> b (c d)') return pose_embedding