# Copyright (c) 2024-2025 Bytedance Ltd. and/or its affiliates # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import copy import json import os, io from typing import Dict, List, Optional, Tuple, Union import numpy as np import torch def get_tracks_inference(tracks, height, width, quant_multi: Optional[int] = 8, **kwargs): if isinstance(tracks, str): tracks = torch.load(tracks) tracks_np = unzip_to_array(tracks) tracks = process_tracks( tracks_np, (width, height), quant_multi=quant_multi, **kwargs ) return tracks def unzip_to_array( data: bytes, key: Union[str, List[str]] = "array" ) -> Union[np.ndarray, Dict[str, np.ndarray]]: bytes_io = io.BytesIO(data) if isinstance(key, str): # Load the NPZ data from the BytesIO object with np.load(bytes_io) as data: return data[key] else: get = {} with np.load(bytes_io) as data: for k in key: get[k] = data[k] return get def process_tracks(tracks_np: np.ndarray, frame_size: Tuple[int, int], quant_multi: int = 8, **kwargs): # tracks: shape [t, h, w, 3] => samples align with 24 fps, model trained with 16 fps. # frame_size: tuple (W, H) tracks = torch.from_numpy(tracks_np).float() / quant_multi if tracks.shape[1] == 121: tracks = torch.permute(tracks, (1, 0, 2, 3)) tracks, visibles = tracks[..., :2], tracks[..., 2:3] short_edge = min(*frame_size) tracks = tracks - torch.tensor([*frame_size]).type_as(tracks) / 2 tracks = tracks / short_edge * 2 visibles = visibles * 2 - 1 trange = torch.linspace(-1, 1, tracks.shape[0]).view(-1, 1, 1, 1).expand(*visibles.shape) out_ = torch.cat([trange, tracks, visibles], dim=-1).view(121, -1, 4) out_0 = out_[:1] out_l = out_[1:] # 121 => 120 | 1 out_l = torch.repeat_interleave(out_l, 2, dim=0)[1::3] # 120 => 240 => 80 return torch.cat([out_0, out_l], dim=0)