Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -1,9 +1,14 @@
|
|
1 |
import gradio as gr
|
|
|
2 |
import os
|
3 |
from typing import List, Dict, Any, Optional, Tuple
|
4 |
import hashlib
|
5 |
from datetime import datetime
|
6 |
import numpy as np
|
|
|
|
|
|
|
|
|
7 |
|
8 |
# PDF 처리 라이브러리
|
9 |
try:
|
@@ -20,7 +25,7 @@ except ImportError:
|
|
20 |
ST_AVAILABLE = False
|
21 |
print("⚠️ Sentence Transformers not installed. Install with: pip install sentence-transformers")
|
22 |
|
23 |
-
#
|
24 |
custom_css = """
|
25 |
.gradio-container {
|
26 |
background: linear-gradient(135deg, #f5f7fa 0%, #c3cfe2 100%);
|
@@ -37,7 +42,6 @@ custom_css = """
|
|
37 |
margin: 12px;
|
38 |
}
|
39 |
|
40 |
-
/* Status messages styling */
|
41 |
.pdf-status {
|
42 |
padding: 12px 16px;
|
43 |
border-radius: 12px;
|
@@ -72,6 +76,14 @@ custom_css = """
|
|
72 |
border-radius: 8px;
|
73 |
font-size: 0.9rem;
|
74 |
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
75 |
"""
|
76 |
|
77 |
class SimpleTextSplitter:
|
@@ -237,44 +249,128 @@ class PDFRAGSystem:
|
|
237 |
all_relevant_chunks.sort(key=lambda x: x.get('similarity', 0), reverse=True)
|
238 |
return all_relevant_chunks[:top_k]
|
239 |
|
240 |
-
def create_rag_prompt(self, query: str, doc_ids: List[str], top_k: int = 3) ->
|
241 |
-
"""RAG 프롬프트 생성"""
|
242 |
relevant_chunks = self.search_relevant_chunks(query, doc_ids, top_k)
|
243 |
|
244 |
if not relevant_chunks:
|
245 |
-
return query
|
246 |
|
247 |
-
#
|
248 |
-
|
249 |
-
|
250 |
-
|
251 |
|
252 |
for i, chunk in enumerate(relevant_chunks, 1):
|
253 |
-
|
254 |
content = chunk['content'][:300] if len(chunk['content']) > 300 else chunk['content']
|
255 |
-
|
256 |
|
257 |
-
|
258 |
-
prompt_parts.append(f"\n질문: {query}")
|
259 |
|
260 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
261 |
|
262 |
-
# RAG 시스템 인스턴스 생성
|
263 |
rag_system = PDFRAGSystem()
|
264 |
|
265 |
-
#
|
266 |
-
|
267 |
-
|
268 |
-
|
269 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
270 |
|
271 |
def upload_pdf(file):
|
272 |
"""PDF 파일 업로드 처리"""
|
273 |
if file is None:
|
274 |
return (
|
275 |
gr.update(value="<div class='pdf-status pdf-info'>📁 파일을 선택해주세요</div>"),
|
276 |
-
gr.update(choices=[])
|
277 |
-
gr.update(value=False)
|
278 |
)
|
279 |
|
280 |
try:
|
@@ -302,257 +398,167 @@ def upload_pdf(file):
|
|
302 |
|
303 |
return (
|
304 |
status_html,
|
305 |
-
gr.update(choices=doc_choices, value=doc_choices)
|
306 |
-
gr.update(value=True)
|
307 |
)
|
308 |
else:
|
309 |
return (
|
310 |
f"<div class='pdf-status pdf-error'>❌ 오류: {result['error']}</div>",
|
311 |
-
gr.update()
|
312 |
-
gr.update(value=False)
|
313 |
)
|
314 |
|
315 |
except Exception as e:
|
316 |
return (
|
317 |
f"<div class='pdf-status pdf-error'>❌ 오류: {str(e)}</div>",
|
318 |
-
gr.update()
|
319 |
-
gr.update(value=False)
|
320 |
)
|
321 |
|
322 |
def clear_documents():
|
323 |
"""문서 초기화"""
|
|
|
324 |
rag_system.documents = {}
|
325 |
rag_system.document_chunks = {}
|
326 |
rag_system.embeddings_store = {}
|
|
|
327 |
|
328 |
return (
|
329 |
gr.update(value="<div class='pdf-status pdf-info'>🗑️ 모든 문서가 삭제되었습니다</div>"),
|
330 |
-
gr.update(choices=[], value=[])
|
331 |
-
gr.update(value=False)
|
332 |
)
|
333 |
|
334 |
-
def
|
335 |
-
"""
|
336 |
-
|
337 |
-
|
338 |
-
|
339 |
-
|
340 |
-
def wrapped_fn(message, history=None):
|
341 |
-
# RAG 설정 가져오기
|
342 |
-
if rag_enabled_state.value and selected_docs_state.value:
|
343 |
-
doc_ids = [doc.split(":")[0] for doc in selected_docs_state.value]
|
344 |
-
enhanced_message = rag_system.create_rag_prompt(message, doc_ids, top_k_state.value)
|
345 |
-
|
346 |
-
# RAG 적용 알림
|
347 |
-
print(f"🔍 RAG 적용: {len(message)}자 → {len(enhanced_message)}자")
|
348 |
-
|
349 |
-
# 원본 모델에 강화된 메시지 전달
|
350 |
-
if history is not None:
|
351 |
-
return original_fn(enhanced_message, history)
|
352 |
-
else:
|
353 |
-
return original_fn(enhanced_message)
|
354 |
-
else:
|
355 |
-
# RAG 미적용시 원본 메시지 그대로 전달
|
356 |
-
if history is not None:
|
357 |
-
return original_fn(message, history)
|
358 |
-
else:
|
359 |
-
return original_fn(message)
|
360 |
|
361 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
362 |
|
363 |
-
#
|
364 |
-
with gr.Blocks(
|
|
|
|
|
365 |
|
366 |
with gr.Row():
|
367 |
-
#
|
368 |
with gr.Column(scale=1):
|
369 |
with gr.Group(elem_classes="main-container"):
|
370 |
-
gr.Markdown("
|
371 |
-
|
372 |
-
|
373 |
-
"Upload PDF
|
|
|
|
|
374 |
)
|
375 |
|
376 |
-
|
377 |
-
|
378 |
-
choices=["openai/gpt-oss-120b", "openai/gpt-oss-20b"],
|
379 |
-
value="openai/gpt-oss-120b",
|
380 |
-
label="📊 Select Model",
|
381 |
-
info="Choose between different model sizes"
|
382 |
)
|
383 |
|
384 |
-
|
385 |
-
|
|
|
|
|
|
|
386 |
|
387 |
-
|
388 |
-
reload_btn = gr.Button("🔄 Apply Model Change", variant="primary", size="lg")
|
389 |
|
390 |
-
|
391 |
-
|
392 |
-
|
393 |
-
|
394 |
-
|
395 |
-
type="filepath"
|
396 |
-
)
|
397 |
-
|
398 |
-
upload_status = gr.HTML(
|
399 |
-
value="<div class='pdf-status pdf-info'>📤 Upload a PDF to enable document-based answers</div>"
|
400 |
-
)
|
401 |
-
|
402 |
-
document_list = gr.CheckboxGroup(
|
403 |
-
choices=[],
|
404 |
-
label="📄 Uploaded Documents",
|
405 |
-
info="Select documents to use as context"
|
406 |
-
)
|
407 |
-
|
408 |
-
clear_btn = gr.Button("🗑️ Clear All Documents", size="sm", variant="secondary")
|
409 |
-
|
410 |
-
enable_rag = gr.Checkbox(
|
411 |
-
label="✨ Enable RAG",
|
412 |
-
value=False,
|
413 |
-
info="Use documents for context-aware responses"
|
414 |
-
)
|
415 |
-
|
416 |
-
top_k_chunks = gr.Slider(
|
417 |
-
minimum=1,
|
418 |
-
maximum=5,
|
419 |
-
value=3,
|
420 |
-
step=1,
|
421 |
-
label="Context Chunks",
|
422 |
-
info="Number of document chunks to use"
|
423 |
-
)
|
424 |
|
425 |
-
|
426 |
-
|
427 |
-
|
428 |
-
|
429 |
-
|
430 |
-
|
431 |
-
|
432 |
-
|
433 |
-
label="Temperature"
|
434 |
-
)
|
435 |
-
max_tokens = gr.Slider(
|
436 |
-
minimum=1,
|
437 |
-
maximum=4096,
|
438 |
-
value=512,
|
439 |
-
step=1,
|
440 |
-
label="Max Tokens"
|
441 |
-
)
|
442 |
-
|
443 |
-
# Main chat area
|
444 |
-
with gr.Column(scale=3):
|
445 |
-
with gr.Group(elem_classes="main-container"):
|
446 |
-
gr.Markdown("## 💬 Chat Interface")
|
447 |
|
448 |
-
# RAG status
|
449 |
rag_status = gr.HTML(
|
450 |
value="<div class='pdf-status pdf-info'>🔍 RAG: <strong>Disabled</strong></div>"
|
451 |
)
|
452 |
|
453 |
-
# RAG context preview
|
454 |
context_preview = gr.HTML(value="", visible=False)
|
455 |
-
|
456 |
-
|
457 |
-
|
458 |
-
|
459 |
-
|
460 |
-
|
461 |
-
|
462 |
-
|
463 |
-
|
464 |
-
|
465 |
-
|
466 |
-
|
467 |
-
|
468 |
-
|
469 |
-
|
470 |
-
|
471 |
-
|
472 |
-
|
473 |
-
|
474 |
-
|
475 |
-
|
476 |
-
|
477 |
-
|
478 |
-
|
479 |
-
|
480 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
481 |
|
482 |
-
#
|
483 |
pdf_upload.upload(
|
484 |
fn=upload_pdf,
|
485 |
inputs=[pdf_upload],
|
486 |
-
outputs=[upload_status, document_list
|
487 |
)
|
488 |
|
489 |
-
# Clear documents
|
490 |
clear_btn.click(
|
491 |
fn=clear_documents,
|
492 |
-
outputs=[upload_status, document_list
|
493 |
)
|
494 |
|
495 |
-
# Update RAG
|
496 |
-
def update_rag_state(enabled, docs, k):
|
497 |
-
rag_enabled_state.value = enabled
|
498 |
-
selected_docs_state.value = docs if docs else []
|
499 |
-
top_k_state.value = k
|
500 |
-
|
501 |
-
status = "✅ Enabled" if enabled and docs else "⭕ Disabled"
|
502 |
-
status_html = f"<div class='pdf-status pdf-info'>🔍 RAG: <strong>{status}</strong></div>"
|
503 |
-
|
504 |
-
# Show context preview if RAG is enabled
|
505 |
-
if enabled and docs:
|
506 |
-
preview = f"<div class='rag-context'>📚 Using {len(docs)} document(s) with {k} chunks per query</div>"
|
507 |
-
return gr.update(value=status_html), gr.update(value=preview, visible=True)
|
508 |
-
else:
|
509 |
-
return gr.update(value=status_html), gr.update(value="", visible=False)
|
510 |
-
|
511 |
-
# Connect RAG state updates
|
512 |
enable_rag.change(
|
513 |
-
fn=
|
514 |
-
inputs=[enable_rag, document_list,
|
515 |
outputs=[rag_status, context_preview]
|
516 |
)
|
517 |
|
518 |
document_list.change(
|
519 |
-
fn=
|
520 |
-
inputs=[enable_rag, document_list,
|
521 |
outputs=[rag_status, context_preview]
|
522 |
)
|
523 |
|
524 |
-
|
525 |
-
fn=
|
526 |
-
inputs=[enable_rag, document_list,
|
527 |
outputs=[rag_status, context_preview]
|
528 |
)
|
529 |
-
|
530 |
-
# Handle model switching
|
531 |
-
reload_btn.click(
|
532 |
-
fn=switch_model,
|
533 |
-
inputs=[model_dropdown],
|
534 |
-
outputs=[model_120b_container, model_20b_container, current_model]
|
535 |
-
).then(
|
536 |
-
fn=lambda: gr.Info("Model switched successfully!"),
|
537 |
-
inputs=[],
|
538 |
-
outputs=[]
|
539 |
-
)
|
540 |
-
|
541 |
-
# Update visibility based on dropdown selection
|
542 |
-
def update_visibility(model_choice):
|
543 |
-
if model_choice == "openai/gpt-oss-120b":
|
544 |
-
return gr.update(visible=True), gr.update(visible=False)
|
545 |
-
else:
|
546 |
-
return gr.update(visible=False), gr.update(visible=True)
|
547 |
-
|
548 |
-
model_dropdown.change(
|
549 |
-
fn=update_visibility,
|
550 |
-
inputs=[model_dropdown],
|
551 |
-
outputs=[model_120b_container, model_20b_container]
|
552 |
-
)
|
553 |
-
|
554 |
-
# Monkey-patch the loaded interfaces to add RAG support
|
555 |
-
# This is done after the interface is loaded
|
556 |
-
demo.load = lambda: print("📚 RAG System Ready!")
|
557 |
|
558 |
-
|
|
|
|
1 |
import gradio as gr
|
2 |
+
import spaces
|
3 |
import os
|
4 |
from typing import List, Dict, Any, Optional, Tuple
|
5 |
import hashlib
|
6 |
from datetime import datetime
|
7 |
import numpy as np
|
8 |
+
from transformers import pipeline, TextIteratorStreamer
|
9 |
+
import torch
|
10 |
+
from threading import Thread
|
11 |
+
import re
|
12 |
|
13 |
# PDF 처리 라이브러리
|
14 |
try:
|
|
|
25 |
ST_AVAILABLE = False
|
26 |
print("⚠️ Sentence Transformers not installed. Install with: pip install sentence-transformers")
|
27 |
|
28 |
+
# Custom CSS
|
29 |
custom_css = """
|
30 |
.gradio-container {
|
31 |
background: linear-gradient(135deg, #f5f7fa 0%, #c3cfe2 100%);
|
|
|
42 |
margin: 12px;
|
43 |
}
|
44 |
|
|
|
45 |
.pdf-status {
|
46 |
padding: 12px 16px;
|
47 |
border-radius: 12px;
|
|
|
76 |
border-radius: 8px;
|
77 |
font-size: 0.9rem;
|
78 |
}
|
79 |
+
|
80 |
+
.thinking-section {
|
81 |
+
background: rgba(0, 0, 0, 0.02);
|
82 |
+
border: 1px solid rgba(0, 0, 0, 0.1);
|
83 |
+
border-radius: 8px;
|
84 |
+
padding: 12px;
|
85 |
+
margin: 8px 0;
|
86 |
+
}
|
87 |
"""
|
88 |
|
89 |
class SimpleTextSplitter:
|
|
|
249 |
all_relevant_chunks.sort(key=lambda x: x.get('similarity', 0), reverse=True)
|
250 |
return all_relevant_chunks[:top_k]
|
251 |
|
252 |
+
def create_rag_prompt(self, query: str, doc_ids: List[str], top_k: int = 3) -> tuple:
|
253 |
+
"""RAG 프롬프트 생성 - 쿼리와 컨텍스트를 분리하여 반환"""
|
254 |
relevant_chunks = self.search_relevant_chunks(query, doc_ids, top_k)
|
255 |
|
256 |
if not relevant_chunks:
|
257 |
+
return query, ""
|
258 |
|
259 |
+
# 컨텍스트 구성
|
260 |
+
context_parts = []
|
261 |
+
context_parts.append("다음 문서 내용을 참고하여 답변해주세요:\n")
|
262 |
+
context_parts.append("=" * 40)
|
263 |
|
264 |
for i, chunk in enumerate(relevant_chunks, 1):
|
265 |
+
context_parts.append(f"\n[참고 {i} - {chunk['doc_name']}]")
|
266 |
content = chunk['content'][:300] if len(chunk['content']) > 300 else chunk['content']
|
267 |
+
context_parts.append(content)
|
268 |
|
269 |
+
context_parts.append("\n" + "=" * 40)
|
|
|
270 |
|
271 |
+
context = "\n".join(context_parts)
|
272 |
+
enhanced_query = f"{context}\n\n질문: {query}"
|
273 |
+
|
274 |
+
return enhanced_query, context
|
275 |
+
|
276 |
+
# Initialize model and RAG system
|
277 |
+
model_id = "openai/gpt-oss-20b"
|
278 |
+
pipe = pipeline(
|
279 |
+
"text-generation",
|
280 |
+
model=model_id,
|
281 |
+
torch_dtype="auto",
|
282 |
+
device_map="auto",
|
283 |
+
)
|
284 |
|
|
|
285 |
rag_system = PDFRAGSystem()
|
286 |
|
287 |
+
# Global state for RAG
|
288 |
+
rag_enabled = False
|
289 |
+
selected_docs = []
|
290 |
+
top_k_chunks = 3
|
291 |
+
last_context = ""
|
292 |
+
|
293 |
+
def format_conversation_history(chat_history):
|
294 |
+
"""Format conversation history for the model"""
|
295 |
+
messages = []
|
296 |
+
for item in chat_history:
|
297 |
+
role = item["role"]
|
298 |
+
content = item["content"]
|
299 |
+
if isinstance(content, list):
|
300 |
+
content = content[0]["text"] if content and "text" in content[0] else str(content)
|
301 |
+
messages.append({"role": role, "content": content})
|
302 |
+
return messages
|
303 |
+
|
304 |
+
@spaces.GPU()
|
305 |
+
def generate_response(input_data, chat_history, max_new_tokens, system_prompt, temperature, top_p, top_k, repetition_penalty):
|
306 |
+
"""Generate response with optional RAG enhancement"""
|
307 |
+
global last_context
|
308 |
+
|
309 |
+
# Apply RAG if enabled
|
310 |
+
if rag_enabled and selected_docs:
|
311 |
+
doc_ids = [doc.split(":")[0] for doc in selected_docs]
|
312 |
+
enhanced_input, context = rag_system.create_rag_prompt(input_data, doc_ids, top_k_chunks)
|
313 |
+
last_context = context
|
314 |
+
actual_input = enhanced_input
|
315 |
+
else:
|
316 |
+
actual_input = input_data
|
317 |
+
last_context = ""
|
318 |
+
|
319 |
+
# Prepare messages
|
320 |
+
new_message = {"role": "user", "content": actual_input}
|
321 |
+
system_message = [{"role": "system", "content": system_prompt}] if system_prompt else []
|
322 |
+
processed_history = format_conversation_history(chat_history)
|
323 |
+
messages = system_message + processed_history + [new_message]
|
324 |
+
|
325 |
+
# Setup streaming
|
326 |
+
streamer = TextIteratorStreamer(pipe.tokenizer, skip_prompt=True, skip_special_tokens=True)
|
327 |
+
generation_kwargs = {
|
328 |
+
"max_new_tokens": max_new_tokens,
|
329 |
+
"do_sample": True,
|
330 |
+
"temperature": temperature,
|
331 |
+
"top_p": top_p,
|
332 |
+
"top_k": top_k,
|
333 |
+
"repetition_penalty": repetition_penalty,
|
334 |
+
"streamer": streamer
|
335 |
+
}
|
336 |
+
|
337 |
+
thread = Thread(target=pipe, args=(messages,), kwargs=generation_kwargs)
|
338 |
+
thread.start()
|
339 |
+
|
340 |
+
# Process streaming output
|
341 |
+
thinking = ""
|
342 |
+
final = ""
|
343 |
+
started_final = False
|
344 |
+
|
345 |
+
for chunk in streamer:
|
346 |
+
if not started_final:
|
347 |
+
if "assistantfinal" in chunk.lower():
|
348 |
+
split_parts = re.split(r'assistantfinal', chunk, maxsplit=1)
|
349 |
+
thinking += split_parts[0]
|
350 |
+
final += split_parts[1]
|
351 |
+
started_final = True
|
352 |
+
else:
|
353 |
+
thinking += chunk
|
354 |
+
else:
|
355 |
+
final += chunk
|
356 |
+
|
357 |
+
clean_thinking = re.sub(r'^analysis\s*', '', thinking).strip()
|
358 |
+
clean_final = final.strip()
|
359 |
+
|
360 |
+
# Add RAG context indicator if used
|
361 |
+
rag_indicator = ""
|
362 |
+
if rag_enabled and selected_docs and last_context:
|
363 |
+
rag_indicator = "<div class='rag-context'>📚 RAG Context Applied</div>\n\n"
|
364 |
+
|
365 |
+
formatted = f"{rag_indicator}<details open><summary>Click to view Thinking Process</summary>\n\n{clean_thinking}\n\n</details>\n\n{clean_final}"
|
366 |
+
yield formatted
|
367 |
|
368 |
def upload_pdf(file):
|
369 |
"""PDF 파일 업로드 처리"""
|
370 |
if file is None:
|
371 |
return (
|
372 |
gr.update(value="<div class='pdf-status pdf-info'>📁 파일을 선택해주세요</div>"),
|
373 |
+
gr.update(choices=[])
|
|
|
374 |
)
|
375 |
|
376 |
try:
|
|
|
398 |
|
399 |
return (
|
400 |
status_html,
|
401 |
+
gr.update(choices=doc_choices, value=doc_choices)
|
|
|
402 |
)
|
403 |
else:
|
404 |
return (
|
405 |
f"<div class='pdf-status pdf-error'>❌ 오류: {result['error']}</div>",
|
406 |
+
gr.update()
|
|
|
407 |
)
|
408 |
|
409 |
except Exception as e:
|
410 |
return (
|
411 |
f"<div class='pdf-status pdf-error'>❌ 오류: {str(e)}</div>",
|
412 |
+
gr.update()
|
|
|
413 |
)
|
414 |
|
415 |
def clear_documents():
|
416 |
"""문서 초기화"""
|
417 |
+
global selected_docs
|
418 |
rag_system.documents = {}
|
419 |
rag_system.document_chunks = {}
|
420 |
rag_system.embeddings_store = {}
|
421 |
+
selected_docs = []
|
422 |
|
423 |
return (
|
424 |
gr.update(value="<div class='pdf-status pdf-info'>🗑️ 모든 문서가 삭제되었습니다</div>"),
|
425 |
+
gr.update(choices=[], value=[])
|
|
|
426 |
)
|
427 |
|
428 |
+
def update_rag_settings(enable, docs, k):
|
429 |
+
"""Update RAG settings"""
|
430 |
+
global rag_enabled, selected_docs, top_k_chunks
|
431 |
+
rag_enabled = enable
|
432 |
+
selected_docs = docs if docs else []
|
433 |
+
top_k_chunks = k
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
434 |
|
435 |
+
status = "✅ Enabled" if enable and docs else "⭕ Disabled"
|
436 |
+
status_html = f"<div class='pdf-status pdf-info'>🔍 RAG: <strong>{status}</strong></div>"
|
437 |
+
|
438 |
+
# Show context preview if RAG is enabled
|
439 |
+
if enable and docs:
|
440 |
+
preview = f"<div class='rag-context'>📚 Using {len(docs)} document(s) with {k} chunks per query</div>"
|
441 |
+
return gr.update(value=status_html), gr.update(value=preview, visible=True)
|
442 |
+
else:
|
443 |
+
return gr.update(value=status_html), gr.update(value="", visible=False)
|
444 |
|
445 |
+
# Build the interface
|
446 |
+
with gr.Blocks(theme=gr.themes.Soft(), css=custom_css, fill_height=True) as demo:
|
447 |
+
gr.Markdown("# 🚀 GPT-OSS-20B with PDF RAG System")
|
448 |
+
gr.Markdown("Enhanced AI assistant with document-based context understanding")
|
449 |
|
450 |
with gr.Row():
|
451 |
+
# Left sidebar for RAG controls
|
452 |
with gr.Column(scale=1):
|
453 |
with gr.Group(elem_classes="main-container"):
|
454 |
+
gr.Markdown("### 📚 Document RAG Settings")
|
455 |
+
|
456 |
+
pdf_upload = gr.File(
|
457 |
+
label="Upload PDF",
|
458 |
+
file_types=[".pdf"],
|
459 |
+
type="filepath"
|
460 |
)
|
461 |
|
462 |
+
upload_status = gr.HTML(
|
463 |
+
value="<div class='pdf-status pdf-info'>📤 Upload a PDF to enable document-based answers</div>"
|
|
|
|
|
|
|
|
|
464 |
)
|
465 |
|
466 |
+
document_list = gr.CheckboxGroup(
|
467 |
+
choices=[],
|
468 |
+
label="📄 Select Documents",
|
469 |
+
info="Choose documents to use as context"
|
470 |
+
)
|
471 |
|
472 |
+
clear_btn = gr.Button("🗑️ Clear All Documents", size="sm", variant="secondary")
|
|
|
473 |
|
474 |
+
enable_rag = gr.Checkbox(
|
475 |
+
label="✨ Enable RAG",
|
476 |
+
value=False,
|
477 |
+
info="Use documents for context-aware responses"
|
478 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
479 |
|
480 |
+
top_k_slider = gr.Slider(
|
481 |
+
minimum=1,
|
482 |
+
maximum=5,
|
483 |
+
value=3,
|
484 |
+
step=1,
|
485 |
+
label="Context Chunks",
|
486 |
+
info="Number of document chunks to use"
|
487 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
488 |
|
489 |
+
# RAG status display
|
490 |
rag_status = gr.HTML(
|
491 |
value="<div class='pdf-status pdf-info'>🔍 RAG: <strong>Disabled</strong></div>"
|
492 |
)
|
493 |
|
|
|
494 |
context_preview = gr.HTML(value="", visible=False)
|
495 |
+
|
496 |
+
# Right side for chat interface
|
497 |
+
with gr.Column(scale=3):
|
498 |
+
with gr.Group(elem_classes="main-container"):
|
499 |
+
# Create ChatInterface with custom function
|
500 |
+
chat_interface = gr.ChatInterface(
|
501 |
+
fn=generate_response,
|
502 |
+
additional_inputs=[
|
503 |
+
gr.Slider(label="Max new tokens", minimum=64, maximum=4096, step=1, value=2048),
|
504 |
+
gr.Textbox(
|
505 |
+
label="System Prompt",
|
506 |
+
value="You are a helpful assistant. Reasoning: medium",
|
507 |
+
lines=4,
|
508 |
+
placeholder="Change system prompt"
|
509 |
+
),
|
510 |
+
gr.Slider(label="Temperature", minimum=0.1, maximum=2.0, step=0.1, value=0.7),
|
511 |
+
gr.Slider(label="Top-p", minimum=0.05, maximum=1.0, step=0.05, value=0.9),
|
512 |
+
gr.Slider(label="Top-k", minimum=1, maximum=100, step=1, value=50),
|
513 |
+
gr.Slider(label="Repetition Penalty", minimum=1.0, maximum=2.0, step=0.05, value=1.0)
|
514 |
+
],
|
515 |
+
examples=[
|
516 |
+
[{"text": "Explain Newton laws clearly and concisely"}],
|
517 |
+
[{"text": "Write a Python function to calculate the Fibonacci sequence"}],
|
518 |
+
[{"text": "What are the benefits of open weight AI models"}],
|
519 |
+
],
|
520 |
+
cache_examples=False,
|
521 |
+
type="messages",
|
522 |
+
description="""Chat with GPT-OSS-20B. Upload PDFs to enhance responses with document context.
|
523 |
+
Click to view thinking process (default is on).""",
|
524 |
+
textbox=gr.Textbox(
|
525 |
+
label="Query Input",
|
526 |
+
placeholder="Type your prompt (RAG will be applied if enabled)"
|
527 |
+
),
|
528 |
+
stop_btn="Stop Generation",
|
529 |
+
multimodal=False
|
530 |
+
)
|
531 |
|
532 |
+
# Event handlers
|
533 |
pdf_upload.upload(
|
534 |
fn=upload_pdf,
|
535 |
inputs=[pdf_upload],
|
536 |
+
outputs=[upload_status, document_list]
|
537 |
)
|
538 |
|
|
|
539 |
clear_btn.click(
|
540 |
fn=clear_documents,
|
541 |
+
outputs=[upload_status, document_list]
|
542 |
)
|
543 |
|
544 |
+
# Update RAG settings when changed
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
545 |
enable_rag.change(
|
546 |
+
fn=update_rag_settings,
|
547 |
+
inputs=[enable_rag, document_list, top_k_slider],
|
548 |
outputs=[rag_status, context_preview]
|
549 |
)
|
550 |
|
551 |
document_list.change(
|
552 |
+
fn=update_rag_settings,
|
553 |
+
inputs=[enable_rag, document_list, top_k_slider],
|
554 |
outputs=[rag_status, context_preview]
|
555 |
)
|
556 |
|
557 |
+
top_k_slider.change(
|
558 |
+
fn=update_rag_settings,
|
559 |
+
inputs=[enable_rag, document_list, top_k_slider],
|
560 |
outputs=[rag_status, context_preview]
|
561 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
562 |
|
563 |
+
if __name__ == "__main__":
|
564 |
+
demo.launch(share=True)
|