Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -2,37 +2,25 @@ import gradio as gr
|
|
2 |
import os
|
3 |
from typing import List, Dict, Any, Optional
|
4 |
import hashlib
|
5 |
-
import json
|
6 |
from datetime import datetime
|
7 |
-
import
|
8 |
|
9 |
-
# PDF ์ฒ๋ฆฌ ๋ผ์ด๋ธ๋ฌ๋ฆฌ
|
10 |
try:
|
11 |
import fitz # PyMuPDF
|
12 |
PDF_AVAILABLE = True
|
13 |
except ImportError:
|
14 |
PDF_AVAILABLE = False
|
15 |
-
print("PyMuPDF not installed. Install with: pip install pymupdf")
|
16 |
-
|
17 |
-
try:
|
18 |
-
import chromadb
|
19 |
-
from chromadb.utils import embedding_functions
|
20 |
-
CHROMA_AVAILABLE = True
|
21 |
-
except ImportError:
|
22 |
-
CHROMA_AVAILABLE = False
|
23 |
-
print("ChromaDB not installed. Install with: pip install chromadb")
|
24 |
|
25 |
try:
|
26 |
from sentence_transformers import SentenceTransformer
|
27 |
ST_AVAILABLE = True
|
28 |
except ImportError:
|
29 |
ST_AVAILABLE = False
|
30 |
-
print("Sentence Transformers not installed. Install with: pip install sentence-transformers")
|
31 |
|
32 |
-
|
33 |
-
from typing import Tuple
|
34 |
-
|
35 |
-
# Custom CSS (๊ธฐ์กด CSS + ์ถ๊ฐ ์คํ์ผ)
|
36 |
custom_css = """
|
37 |
.gradio-container {
|
38 |
background: linear-gradient(135deg, #667eea 0%, #764ba2 25%, #f093fb 50%, #4facfe 75%, #00f2fe 100%);
|
@@ -79,81 +67,80 @@ custom_css = """
|
|
79 |
border: 1px solid rgba(248, 113, 113, 0.5);
|
80 |
color: #ef4444;
|
81 |
}
|
82 |
-
.pdf-
|
83 |
-
background-color: rgba(
|
84 |
-
border: 1px solid rgba(
|
85 |
-
color: #
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
86 |
}
|
87 |
"""
|
88 |
|
89 |
class SimpleTextSplitter:
|
90 |
-
"""
|
91 |
-
def __init__(self, chunk_size=
|
92 |
self.chunk_size = chunk_size
|
93 |
self.chunk_overlap = chunk_overlap
|
94 |
|
95 |
def split_text(self, text: str) -> List[str]:
|
96 |
"""ํ
์คํธ๋ฅผ ์ฒญํฌ๋ก ๋ถํ """
|
97 |
chunks = []
|
98 |
-
|
99 |
-
|
100 |
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
if chunk:
|
112 |
-
chunks.append(chunk)
|
113 |
-
|
114 |
-
start = end - self.chunk_overlap
|
115 |
-
if start < 0:
|
116 |
-
start = 0
|
117 |
|
118 |
return chunks
|
119 |
|
120 |
-
class
|
121 |
-
"""
|
122 |
|
123 |
def __init__(self):
|
124 |
self.documents = {}
|
125 |
self.document_chunks = {}
|
126 |
self.embeddings_store = {}
|
127 |
-
self.text_splitter = SimpleTextSplitter(chunk_size=
|
128 |
|
129 |
-
# ์๋ฒ ๋ฉ ๋ชจ๋ธ ์ด๊ธฐํ
|
130 |
self.embedder = None
|
131 |
if ST_AVAILABLE:
|
132 |
try:
|
133 |
self.embedder = SentenceTransformer('sentence-transformers/all-MiniLM-L6-v2')
|
134 |
-
print("
|
135 |
except Exception as e:
|
136 |
-
print(f"
|
137 |
|
138 |
def extract_text_from_pdf(self, pdf_path: str) -> Dict[str, Any]:
|
139 |
"""PDF์์ ํ
์คํธ ์ถ์ถ"""
|
140 |
if not PDF_AVAILABLE:
|
141 |
-
# PyMuPDF๊ฐ ์๋ ๊ฒฝ์ฐ ๋์ฒด ๋ฐฉ๋ฒ
|
142 |
return {
|
143 |
"metadata": {
|
144 |
"title": "PDF Reader Not Available",
|
145 |
"file_name": os.path.basename(pdf_path),
|
146 |
"pages": 0
|
147 |
},
|
148 |
-
"full_text": "PDF
|
149 |
}
|
150 |
|
151 |
try:
|
152 |
doc = fitz.open(pdf_path)
|
153 |
text_content = []
|
154 |
metadata = {
|
155 |
-
"title": doc.metadata.get("title",
|
156 |
-
"author": doc.metadata.get("author", "Unknown"),
|
157 |
"pages": len(doc),
|
158 |
"file_name": os.path.basename(pdf_path)
|
159 |
}
|
@@ -184,7 +171,7 @@ class SimplePDFRAGSystem:
|
|
184 |
# ์ฒญํฌ ์ ์ฅ
|
185 |
self.document_chunks[doc_id] = chunks
|
186 |
|
187 |
-
# ์๋ฒ ๋ฉ ์์ฑ
|
188 |
if self.embedder:
|
189 |
embeddings = self.embedder.encode(chunks)
|
190 |
self.embeddings_store[doc_id] = embeddings
|
@@ -193,8 +180,7 @@ class SimplePDFRAGSystem:
|
|
193 |
self.documents[doc_id] = {
|
194 |
"metadata": pdf_data["metadata"],
|
195 |
"chunk_count": len(chunks),
|
196 |
-
"upload_time": datetime.now().isoformat()
|
197 |
-
"full_text": pdf_data["full_text"][:500] # ์ฒ์ 500์ ์ ์ฅ
|
198 |
}
|
199 |
|
200 |
return {
|
@@ -206,13 +192,10 @@ class SimplePDFRAGSystem:
|
|
206 |
}
|
207 |
|
208 |
except Exception as e:
|
209 |
-
return {
|
210 |
-
"success": False,
|
211 |
-
"error": str(e)
|
212 |
-
}
|
213 |
|
214 |
-
def search_relevant_chunks(self, query: str, doc_ids: List[str], top_k: int =
|
215 |
-
"""
|
216 |
all_relevant_chunks = []
|
217 |
|
218 |
if self.embedder and self.embeddings_store:
|
@@ -230,79 +213,75 @@ class SimplePDFRAGSystem:
|
|
230 |
sim = np.dot(query_embedding, emb) / (np.linalg.norm(query_embedding) * np.linalg.norm(emb))
|
231 |
similarities.append(sim)
|
232 |
|
233 |
-
# ์์
|
234 |
top_indices = np.argsort(similarities)[-top_k:][::-1]
|
235 |
|
236 |
for idx in top_indices:
|
237 |
-
|
238 |
-
|
239 |
-
|
240 |
-
|
241 |
-
|
242 |
-
|
243 |
-
})
|
244 |
else:
|
245 |
-
#
|
246 |
-
|
247 |
-
query_words = set(query_lower.split())
|
248 |
|
249 |
for doc_id in doc_ids:
|
250 |
if doc_id in self.document_chunks:
|
251 |
chunks = self.document_chunks[doc_id]
|
252 |
-
for
|
253 |
chunk_lower = chunk.lower()
|
254 |
-
|
255 |
-
|
256 |
-
if matching_words > 0:
|
257 |
all_relevant_chunks.append({
|
258 |
-
"content": chunk,
|
259 |
-
"doc_id": doc_id,
|
260 |
"doc_name": self.documents[doc_id]["metadata"]["file_name"],
|
261 |
-
"
|
262 |
-
"similarity": matching_words / len(query_words)
|
263 |
})
|
264 |
|
265 |
-
#
|
266 |
all_relevant_chunks.sort(key=lambda x: x.get('similarity', 0), reverse=True)
|
267 |
return all_relevant_chunks[:top_k]
|
268 |
|
269 |
-
def
|
270 |
-
"""
|
271 |
-
|
|
|
|
|
272 |
return query
|
273 |
|
274 |
-
|
275 |
-
|
276 |
-
|
277 |
-
|
278 |
-
)
|
279 |
|
280 |
-
|
|
|
|
|
|
|
|
|
281 |
|
282 |
-
|
283 |
-
|
284 |
-
|
285 |
-
{context}
|
286 |
-
|
287 |
-
## ์ง๋ฌธ:
|
288 |
-
{query}
|
289 |
-
|
290 |
-
## ๋ต๋ณ:
|
291 |
-
์ ๋ฌธ์ ๋ด์ฉ์ ๋ฐํ์ผ๋ก ์ง๋ฌธ์ ๋ํด ์์ธํ๊ณ ์ ํํ๊ฒ ๋ต๋ณํ๊ฒ ์ต๋๋ค."""
|
292 |
|
293 |
-
return
|
294 |
|
295 |
# RAG ์์คํ
์ธ์คํด์ค ์์ฑ
|
296 |
-
rag_system =
|
297 |
|
298 |
-
# State
|
299 |
current_model = gr.State("openai/gpt-oss-120b")
|
300 |
-
rag_enabled = gr.State(False)
|
301 |
|
302 |
def upload_pdf(file):
|
303 |
"""PDF ํ์ผ ์
๋ก๋ ์ฒ๋ฆฌ"""
|
304 |
if file is None:
|
305 |
-
return
|
|
|
|
|
|
|
|
|
306 |
|
307 |
try:
|
308 |
# ํ์ผ ํด์๋ฅผ ID๋ก ์ฌ์ฉ
|
@@ -318,175 +297,145 @@ def upload_pdf(file):
|
|
318 |
status_html = f"""
|
319 |
<div class="pdf-status pdf-success">
|
320 |
โ
PDF ์
๋ก๋ ์ฑ๊ณต!<br>
|
321 |
-
๐
|
322 |
๐ ํ์ด์ง: {result['pages']}ํ์ด์ง<br>
|
323 |
-
๐
|
324 |
-
๐ ๋ฌธ์ ID: {doc_id}
|
325 |
</div>
|
326 |
"""
|
327 |
|
328 |
# ๋ฌธ์ ๋ชฉ๋ก ์
๋ฐ์ดํธ
|
329 |
-
doc_list = list(rag_system.documents.keys())
|
330 |
doc_choices = [f"{doc_id}: {rag_system.documents[doc_id]['metadata']['file_name']}"
|
331 |
-
for doc_id in
|
332 |
|
333 |
-
return
|
|
|
|
|
|
|
|
|
334 |
else:
|
335 |
status_html = f"""
|
336 |
<div class="pdf-status pdf-error">
|
337 |
-
โ
|
338 |
-
์ค๋ฅ: {result['error']}
|
339 |
</div>
|
340 |
"""
|
341 |
-
return status_html, gr.update(
|
342 |
|
343 |
except Exception as e:
|
344 |
-
|
345 |
-
|
346 |
-
|
347 |
-
|
348 |
-
|
349 |
-
return status_html, gr.update(choices=[]), gr.update(value=False)
|
350 |
|
351 |
def clear_documents():
|
352 |
-
"""
|
353 |
-
|
354 |
-
|
355 |
-
|
356 |
-
|
357 |
-
|
358 |
-
|
359 |
-
|
360 |
-
|
|
|
361 |
|
362 |
def switch_model(model_choice):
|
363 |
-
"""
|
364 |
-
|
365 |
-
return gr.update(visible=True), gr.update(visible=False), model_choice
|
366 |
-
else:
|
367 |
-
return gr.update(visible=False), gr.update(visible=True), model_choice
|
368 |
|
369 |
-
def
|
370 |
-
"""
|
|
|
|
|
371 |
|
372 |
-
|
373 |
-
|
374 |
-
|
375 |
-
|
376 |
-
|
377 |
-
# ๊ด๋ จ ์ฒญํฌ ๊ฒ์
|
378 |
-
relevant_chunks = rag_system.search_relevant_chunks(message, doc_ids, top_k)
|
379 |
-
|
380 |
-
if relevant_chunks:
|
381 |
-
# ์ปจํ
์คํธ๋ฅผ ํฌํจํ ํ๋กฌํํธ ์์ฑ
|
382 |
-
enhanced_message = rag_system.generate_context_prompt(message, relevant_chunks)
|
383 |
-
|
384 |
-
# ๋๋ฒ๊ทธ ์ ๋ณด ํฌํจ ์๋ต (์ค์ ๊ตฌํ์ ๋ชจ๋ธ API ํธ์ถ๋ก ๋์ฒด)
|
385 |
-
response = f"""๐ RAG ๊ธฐ๋ฐ ๋ต๋ณ (๋ชจ๋ธ: {model})
|
386 |
-
|
387 |
-
์ฐพ์ ๊ด๋ จ ๋ฌธ์ ์น์
: {len(relevant_chunks)}๊ฐ
|
388 |
-
|
389 |
-
์ง๋ฌธ: {message}
|
390 |
-
|
391 |
-
๋ต๋ณ:
|
392 |
-
{enhanced_message[:2000]}...
|
393 |
-
|
394 |
-
[์ฐธ๊ณ : ์ค์ ๊ตฌํ์ ์ฌ๊ธฐ์ ๋ชจ๋ธ API๋ฅผ ํธ์ถํ์ฌ enhanced_message๋ฅผ ์ ์กํ๊ณ ์๋ต์ ๋ฐ์์ผ ํฉ๋๋ค]
|
395 |
-
|
396 |
-
๊ด๋ จ ๋ฌธ์ ์น์
์์ฝ:
|
397 |
-
"""
|
398 |
-
for i, chunk in enumerate(relevant_chunks[:3], 1):
|
399 |
-
response += f"\n{i}. {chunk['doc_name']} - ์น์
{chunk['chunk_index']+1} (์ ์ฌ๋: {chunk['similarity']:.2f})"
|
400 |
-
response += f"\n ๋ด์ฉ: {chunk['content'][:200]}...\n"
|
401 |
-
else:
|
402 |
-
response = f"โ ๏ธ ์ ํ๋ ๋ฌธ์์์ '{message}'์ ๊ด๋ จ๋ ๋ด์ฉ์ ์ฐพ์ ์ ์์ต๋๋ค. ๋ค๋ฅธ ์ง๋ฌธ์ ์๋ํด๋ณด์ธ์."
|
403 |
-
else:
|
404 |
-
# RAG ๋นํ์ฑํ ์ํ
|
405 |
-
response = f"""์ผ๋ฐ ๋ต๋ณ ๋ชจ๋ (๋ชจ๋ธ: {model})
|
406 |
-
|
407 |
-
์ง๋ฌธ: {message}
|
408 |
-
|
409 |
-
[์ฐธ๊ณ : ์ค์ ๊ตฌํ์ ์ฌ๊ธฐ์ ๋ชจ๋ธ API๋ฅผ ํธ์ถํ์ฌ message๋ฅผ ์ ์กํ๊ณ ์๋ต์ ๋ฐ์์ผ ํฉ๋๋ค]
|
410 |
-
|
411 |
-
PDF ๋ฌธ์๋ฅผ ์
๋ก๋ํ๊ณ RAG๋ฅผ ํ์ฑํํ๋ฉด ๋ฌธ์ ๊ธฐ๋ฐ ๋ต๋ณ์ ๋ฐ์ ์ ์์ต๋๋ค."""
|
412 |
|
413 |
-
|
414 |
-
|
|
|
|
|
|
|
|
|
|
|
415 |
|
416 |
-
#
|
417 |
with gr.Blocks(fill_height=True, theme="Nymbo/Nymbo_Theme", css=custom_css) as demo:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
418 |
with gr.Row():
|
419 |
-
#
|
420 |
with gr.Column(scale=1):
|
421 |
with gr.Group(elem_classes="main-container"):
|
422 |
-
gr.Markdown("# ๐
|
423 |
gr.Markdown(
|
424 |
-
"
|
|
|
425 |
)
|
426 |
|
427 |
-
#
|
428 |
model_dropdown = gr.Dropdown(
|
429 |
choices=["openai/gpt-oss-120b", "openai/gpt-oss-20b"],
|
430 |
value="openai/gpt-oss-120b",
|
431 |
-
label="๐
|
|
|
432 |
)
|
433 |
|
|
|
434 |
login_button = gr.LoginButton("Sign in with Hugging Face", size="lg")
|
435 |
-
reload_btn = gr.Button("๐ ๋ชจ๋ธ ๋ณ๊ฒฝ ์ ์ฉ", variant="primary", size="lg")
|
436 |
|
437 |
-
#
|
438 |
-
|
|
|
|
|
|
|
439 |
pdf_upload = gr.File(
|
440 |
-
label="PDF
|
441 |
file_types=[".pdf"],
|
442 |
type="filepath"
|
443 |
)
|
444 |
|
445 |
upload_status = gr.HTML(
|
446 |
-
value="<div class='pdf-status'
|
447 |
)
|
448 |
|
449 |
document_list = gr.CheckboxGroup(
|
450 |
choices=[],
|
451 |
label="๐ ์
๋ก๋๋ ๋ฌธ์",
|
452 |
-
info="
|
453 |
)
|
454 |
|
455 |
-
|
456 |
-
clear_btn = gr.Button("๐๏ธ ๋ชจ๋ ๋ฌธ์ ์ญ์ ", size="sm")
|
457 |
-
refresh_btn = gr.Button("๐ ๋ชฉ๋ก ์๋ก๊ณ ์นจ", size="sm")
|
458 |
|
459 |
enable_rag = gr.Checkbox(
|
460 |
label="RAG ํ์ฑํ",
|
461 |
value=False,
|
462 |
-
info="
|
463 |
)
|
464 |
|
465 |
-
|
466 |
-
|
467 |
-
|
468 |
-
|
469 |
-
|
470 |
-
|
471 |
-
|
472 |
-
|
473 |
-
)
|
474 |
-
|
475 |
-
gr.Markdown("""
|
476 |
-
### ๐ RAG ์ฌ์ฉ ํ:
|
477 |
-
1. PDF ํ์ผ์ ์
๋ก๋ํ์ธ์
|
478 |
-
2. ์
๋ก๋๋ ๋ฌธ์๋ฅผ ์ ํํ์ธ์
|
479 |
-
3. RAG๋ฅผ ํ์ฑํํ์ธ์
|
480 |
-
4. ๋ฌธ์ ๋ด์ฉ์ ๋ํด ์ง๋ฌธํ์ธ์
|
481 |
-
|
482 |
-
์์ ์ง๋ฌธ:
|
483 |
-
- "๋ฌธ์์ ์ฃผ์ ๋ด์ฉ์ ์์ฝํด์ฃผ์ธ์"
|
484 |
-
- "์ด ๋ฌธ์์์ ์ธ๊ธ๋ ๋ ์ง๋ ์ธ์ ์ธ๊ฐ์?"
|
485 |
-
- "์ฐธ๊ฐ ์๊ฒฉ ์กฐ๊ฑด์ ๋ฌด์์ธ๊ฐ์?"
|
486 |
-
""")
|
487 |
|
488 |
-
#
|
489 |
-
with gr.Accordion("โ๏ธ
|
|
|
490 |
temperature = gr.Slider(
|
491 |
minimum=0,
|
492 |
maximum=2,
|
@@ -502,52 +451,75 @@ with gr.Blocks(fill_height=True, theme="Nymbo/Nymbo_Theme", css=custom_css) as d
|
|
502 |
label="Max Tokens"
|
503 |
)
|
504 |
|
505 |
-
#
|
506 |
with gr.Column(scale=3):
|
507 |
with gr.Group(elem_classes="main-container"):
|
508 |
gr.Markdown("## ๐ฌ Chat Interface")
|
509 |
|
510 |
# RAG ์ํ ํ์
|
511 |
-
|
512 |
-
|
513 |
-
|
514 |
-
)
|
515 |
|
516 |
-
#
|
|
|
|
|
|
|
517 |
with gr.Column(visible=True) as model_120b_container:
|
518 |
gr.Markdown("### Model: openai/gpt-oss-120b")
|
519 |
-
|
520 |
-
|
521 |
-
|
522 |
-
|
523 |
-
|
524 |
-
|
525 |
-
|
526 |
-
|
527 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
528 |
|
529 |
with gr.Column(visible=False) as model_20b_container:
|
530 |
gr.Markdown("### Model: openai/gpt-oss-20b")
|
531 |
-
|
532 |
-
|
533 |
-
|
534 |
-
|
535 |
-
|
536 |
-
|
537 |
-
|
538 |
-
|
539 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
540 |
|
541 |
-
#
|
542 |
|
543 |
-
# PDF ์
๋ก๋
|
544 |
pdf_upload.upload(
|
545 |
fn=upload_pdf,
|
546 |
inputs=[pdf_upload],
|
547 |
outputs=[upload_status, document_list, enable_rag]
|
548 |
)
|
549 |
|
550 |
-
# ๋ฌธ์
|
551 |
clear_btn.click(
|
552 |
fn=clear_documents,
|
553 |
outputs=[upload_status, document_list, enable_rag]
|
@@ -556,7 +528,7 @@ with gr.Blocks(fill_height=True, theme="Nymbo/Nymbo_Theme", css=custom_css) as d
|
|
556 |
# RAG ์ํ ์
๋ฐ์ดํธ
|
557 |
enable_rag.change(
|
558 |
fn=lambda x: gr.update(
|
559 |
-
value=f"<div
|
560 |
),
|
561 |
inputs=[enable_rag],
|
562 |
outputs=[rag_status]
|
@@ -568,46 +540,59 @@ with gr.Blocks(fill_height=True, theme="Nymbo/Nymbo_Theme", css=custom_css) as d
|
|
568 |
inputs=[model_dropdown],
|
569 |
outputs=[model_120b_container, model_20b_container, current_model]
|
570 |
).then(
|
571 |
-
fn=lambda: gr.Info("
|
572 |
inputs=[],
|
573 |
outputs=[]
|
574 |
)
|
575 |
|
576 |
-
#
|
577 |
-
|
578 |
-
|
579 |
-
|
580 |
-
|
581 |
-
|
582 |
|
583 |
-
|
584 |
-
fn=
|
585 |
-
inputs=[
|
586 |
-
outputs=[
|
587 |
)
|
588 |
|
589 |
-
|
590 |
-
|
591 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
592 |
)
|
593 |
|
594 |
-
|
595 |
-
|
596 |
-
|
597 |
-
|
598 |
-
outputs=[msg_box_20b, chatbot_20b]
|
599 |
)
|
600 |
|
|
|
601 |
send_btn_20b.click(
|
602 |
-
fn=
|
603 |
-
inputs=[
|
604 |
-
outputs=[
|
605 |
)
|
606 |
|
607 |
-
|
608 |
-
|
609 |
-
|
|
|
610 |
)
|
611 |
|
612 |
-
|
613 |
-
demo.launch()
|
|
|
2 |
import os
|
3 |
from typing import List, Dict, Any, Optional
|
4 |
import hashlib
|
|
|
5 |
from datetime import datetime
|
6 |
+
import numpy as np
|
7 |
|
8 |
+
# PDF ์ฒ๋ฆฌ ๋ผ์ด๋ธ๋ฌ๋ฆฌ
|
9 |
try:
|
10 |
import fitz # PyMuPDF
|
11 |
PDF_AVAILABLE = True
|
12 |
except ImportError:
|
13 |
PDF_AVAILABLE = False
|
14 |
+
print("โ ๏ธ PyMuPDF not installed. Install with: pip install pymupdf")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
15 |
|
16 |
try:
|
17 |
from sentence_transformers import SentenceTransformer
|
18 |
ST_AVAILABLE = True
|
19 |
except ImportError:
|
20 |
ST_AVAILABLE = False
|
21 |
+
print("โ ๏ธ Sentence Transformers not installed. Install with: pip install sentence-transformers")
|
22 |
|
23 |
+
# Custom CSS for gradient background and styling
|
|
|
|
|
|
|
24 |
custom_css = """
|
25 |
.gradio-container {
|
26 |
background: linear-gradient(135deg, #667eea 0%, #764ba2 25%, #f093fb 50%, #4facfe 75%, #00f2fe 100%);
|
|
|
67 |
border: 1px solid rgba(248, 113, 113, 0.5);
|
68 |
color: #ef4444;
|
69 |
}
|
70 |
+
.pdf-info {
|
71 |
+
background-color: rgba(59, 130, 246, 0.2);
|
72 |
+
border: 1px solid rgba(59, 130, 246, 0.5);
|
73 |
+
color: #3b82f6;
|
74 |
+
}
|
75 |
+
.rag-context {
|
76 |
+
background-color: rgba(251, 191, 36, 0.1);
|
77 |
+
border-left: 4px solid #f59e0b;
|
78 |
+
padding: 10px;
|
79 |
+
margin: 10px 0;
|
80 |
+
border-radius: 5px;
|
81 |
}
|
82 |
"""
|
83 |
|
84 |
class SimpleTextSplitter:
|
85 |
+
"""ํ
์คํธ ๋ถํ ๊ธฐ"""
|
86 |
+
def __init__(self, chunk_size=800, chunk_overlap=100):
|
87 |
self.chunk_size = chunk_size
|
88 |
self.chunk_overlap = chunk_overlap
|
89 |
|
90 |
def split_text(self, text: str) -> List[str]:
|
91 |
"""ํ
์คํธ๋ฅผ ์ฒญํฌ๋ก ๋ถํ """
|
92 |
chunks = []
|
93 |
+
sentences = text.split('. ')
|
94 |
+
current_chunk = ""
|
95 |
|
96 |
+
for sentence in sentences:
|
97 |
+
if len(current_chunk) + len(sentence) < self.chunk_size:
|
98 |
+
current_chunk += sentence + ". "
|
99 |
+
else:
|
100 |
+
if current_chunk:
|
101 |
+
chunks.append(current_chunk.strip())
|
102 |
+
current_chunk = sentence + ". "
|
103 |
+
|
104 |
+
if current_chunk:
|
105 |
+
chunks.append(current_chunk.strip())
|
|
|
|
|
|
|
|
|
|
|
|
|
106 |
|
107 |
return chunks
|
108 |
|
109 |
+
class PDFRAGSystem:
|
110 |
+
"""PDF ๊ธฐ๋ฐ RAG ์์คํ
"""
|
111 |
|
112 |
def __init__(self):
|
113 |
self.documents = {}
|
114 |
self.document_chunks = {}
|
115 |
self.embeddings_store = {}
|
116 |
+
self.text_splitter = SimpleTextSplitter(chunk_size=800, chunk_overlap=100)
|
117 |
|
118 |
+
# ์๋ฒ ๋ฉ ๋ชจ๋ธ ์ด๊ธฐํ
|
119 |
self.embedder = None
|
120 |
if ST_AVAILABLE:
|
121 |
try:
|
122 |
self.embedder = SentenceTransformer('sentence-transformers/all-MiniLM-L6-v2')
|
123 |
+
print("โ
์๋ฒ ๋ฉ ๋ชจ๋ธ ๋ก๋ ์ฑ๊ณต")
|
124 |
except Exception as e:
|
125 |
+
print(f"โ ๏ธ ์๋ฒ ๋ฉ ๋ชจ๋ธ ๋ก๋ ์คํจ: {e}")
|
126 |
|
127 |
def extract_text_from_pdf(self, pdf_path: str) -> Dict[str, Any]:
|
128 |
"""PDF์์ ํ
์คํธ ์ถ์ถ"""
|
129 |
if not PDF_AVAILABLE:
|
|
|
130 |
return {
|
131 |
"metadata": {
|
132 |
"title": "PDF Reader Not Available",
|
133 |
"file_name": os.path.basename(pdf_path),
|
134 |
"pages": 0
|
135 |
},
|
136 |
+
"full_text": "PDF ์ฒ๋ฆฌ๋ฅผ ์ํด 'pip install pymupdf'๋ฅผ ์คํํด์ฃผ์ธ์."
|
137 |
}
|
138 |
|
139 |
try:
|
140 |
doc = fitz.open(pdf_path)
|
141 |
text_content = []
|
142 |
metadata = {
|
143 |
+
"title": doc.metadata.get("title", os.path.basename(pdf_path)),
|
|
|
144 |
"pages": len(doc),
|
145 |
"file_name": os.path.basename(pdf_path)
|
146 |
}
|
|
|
171 |
# ์ฒญํฌ ์ ์ฅ
|
172 |
self.document_chunks[doc_id] = chunks
|
173 |
|
174 |
+
# ์๋ฒ ๋ฉ ์์ฑ
|
175 |
if self.embedder:
|
176 |
embeddings = self.embedder.encode(chunks)
|
177 |
self.embeddings_store[doc_id] = embeddings
|
|
|
180 |
self.documents[doc_id] = {
|
181 |
"metadata": pdf_data["metadata"],
|
182 |
"chunk_count": len(chunks),
|
183 |
+
"upload_time": datetime.now().isoformat()
|
|
|
184 |
}
|
185 |
|
186 |
return {
|
|
|
192 |
}
|
193 |
|
194 |
except Exception as e:
|
195 |
+
return {"success": False, "error": str(e)}
|
|
|
|
|
|
|
196 |
|
197 |
+
def search_relevant_chunks(self, query: str, doc_ids: List[str], top_k: int = 3) -> List[Dict]:
|
198 |
+
"""๊ด๋ จ ์ฒญํฌ ๊ฒ์"""
|
199 |
all_relevant_chunks = []
|
200 |
|
201 |
if self.embedder and self.embeddings_store:
|
|
|
213 |
sim = np.dot(query_embedding, emb) / (np.linalg.norm(query_embedding) * np.linalg.norm(emb))
|
214 |
similarities.append(sim)
|
215 |
|
216 |
+
# ์์ ์ฒญํฌ ์ ํ
|
217 |
top_indices = np.argsort(similarities)[-top_k:][::-1]
|
218 |
|
219 |
for idx in top_indices:
|
220 |
+
if similarities[idx] > 0.2:
|
221 |
+
all_relevant_chunks.append({
|
222 |
+
"content": chunks[idx],
|
223 |
+
"doc_name": self.documents[doc_id]["metadata"]["file_name"],
|
224 |
+
"similarity": similarities[idx]
|
225 |
+
})
|
|
|
226 |
else:
|
227 |
+
# ํค์๋ ๊ธฐ๋ฐ ๊ฒ์
|
228 |
+
query_keywords = set(query.lower().split())
|
|
|
229 |
|
230 |
for doc_id in doc_ids:
|
231 |
if doc_id in self.document_chunks:
|
232 |
chunks = self.document_chunks[doc_id]
|
233 |
+
for chunk in chunks[:top_k]: # ์ฒ์ ๋ช ๊ฐ๋ง ์ฌ์ฉ
|
234 |
chunk_lower = chunk.lower()
|
235 |
+
score = sum(1 for keyword in query_keywords if keyword in chunk_lower)
|
236 |
+
if score > 0:
|
|
|
237 |
all_relevant_chunks.append({
|
238 |
+
"content": chunk[:500], # ๊ธธ์ด ์ ํ
|
|
|
239 |
"doc_name": self.documents[doc_id]["metadata"]["file_name"],
|
240 |
+
"similarity": score / len(query_keywords) if query_keywords else 0
|
|
|
241 |
})
|
242 |
|
243 |
+
# ์ ๋ ฌ ๋ฐ ๋ฐํ
|
244 |
all_relevant_chunks.sort(key=lambda x: x.get('similarity', 0), reverse=True)
|
245 |
return all_relevant_chunks[:top_k]
|
246 |
|
247 |
+
def create_rag_prompt(self, query: str, doc_ids: List[str], top_k: int = 3) -> str:
|
248 |
+
"""RAG ํ๋กฌํํธ ์์ฑ"""
|
249 |
+
relevant_chunks = self.search_relevant_chunks(query, doc_ids, top_k)
|
250 |
+
|
251 |
+
if not relevant_chunks:
|
252 |
return query
|
253 |
|
254 |
+
# ํ๋กฌํํธ ๊ตฌ์ฑ
|
255 |
+
prompt_parts = []
|
256 |
+
prompt_parts.append("๋ค์ ๋ฌธ์ ๋ด์ฉ์ ์ฐธ๊ณ ํ์ฌ ์ง๋ฌธ์ ๋ต๋ณํด์ฃผ์ธ์:\n")
|
257 |
+
prompt_parts.append("=" * 50)
|
|
|
258 |
|
259 |
+
for i, chunk in enumerate(relevant_chunks, 1):
|
260 |
+
prompt_parts.append(f"\n[์ฐธ๊ณ ๋ฌธ์ {i} - {chunk['doc_name']}]")
|
261 |
+
content = chunk['content'][:400] if len(chunk['content']) > 400 else chunk['content']
|
262 |
+
prompt_parts.append(content)
|
263 |
+
prompt_parts.append("")
|
264 |
|
265 |
+
prompt_parts.append("=" * 50)
|
266 |
+
prompt_parts.append(f"\n์ง๋ฌธ: {query}")
|
267 |
+
prompt_parts.append("\n์ ์ฐธ๊ณ ๋ฌธ์๋ฅผ ๋ฐํ์ผ๋ก ์์ธํ๊ณ ์ ํํ๊ฒ ๋ต๋ณํด์ฃผ์ธ์:")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
268 |
|
269 |
+
return "\n".join(prompt_parts)
|
270 |
|
271 |
# RAG ์์คํ
์ธ์คํด์ค ์์ฑ
|
272 |
+
rag_system = PDFRAGSystem()
|
273 |
|
274 |
+
# State variable to track current model
|
275 |
current_model = gr.State("openai/gpt-oss-120b")
|
|
|
276 |
|
277 |
def upload_pdf(file):
|
278 |
"""PDF ํ์ผ ์
๋ก๋ ์ฒ๋ฆฌ"""
|
279 |
if file is None:
|
280 |
+
return (
|
281 |
+
gr.update(value="<div class='pdf-status pdf-error'>ํ์ผ์ ์ ํํด์ฃผ์ธ์</div>"),
|
282 |
+
gr.update(choices=[]),
|
283 |
+
gr.update(value=False)
|
284 |
+
)
|
285 |
|
286 |
try:
|
287 |
# ํ์ผ ํด์๋ฅผ ID๋ก ์ฌ์ฉ
|
|
|
297 |
status_html = f"""
|
298 |
<div class="pdf-status pdf-success">
|
299 |
โ
PDF ์
๋ก๋ ์ฑ๊ณต!<br>
|
300 |
+
๐ ํ์ผ: {result['title']}<br>
|
301 |
๐ ํ์ด์ง: {result['pages']}ํ์ด์ง<br>
|
302 |
+
๐ ์ฒญํฌ: {result['chunks']}๊ฐ ์์ฑ
|
|
|
303 |
</div>
|
304 |
"""
|
305 |
|
306 |
# ๋ฌธ์ ๋ชฉ๋ก ์
๋ฐ์ดํธ
|
|
|
307 |
doc_choices = [f"{doc_id}: {rag_system.documents[doc_id]['metadata']['file_name']}"
|
308 |
+
for doc_id in rag_system.documents.keys()]
|
309 |
|
310 |
+
return (
|
311 |
+
status_html,
|
312 |
+
gr.update(choices=doc_choices, value=doc_choices),
|
313 |
+
gr.update(value=True)
|
314 |
+
)
|
315 |
else:
|
316 |
status_html = f"""
|
317 |
<div class="pdf-status pdf-error">
|
318 |
+
โ ์
๋ก๋ ์คํจ: {result['error']}
|
|
|
319 |
</div>
|
320 |
"""
|
321 |
+
return status_html, gr.update(), gr.update(value=False)
|
322 |
|
323 |
except Exception as e:
|
324 |
+
return (
|
325 |
+
f"<div class='pdf-status pdf-error'>โ ์ค๋ฅ: {str(e)}</div>",
|
326 |
+
gr.update(),
|
327 |
+
gr.update(value=False)
|
328 |
+
)
|
|
|
329 |
|
330 |
def clear_documents():
|
331 |
+
"""๋ฌธ์ ์ด๊ธฐํ"""
|
332 |
+
rag_system.documents = {}
|
333 |
+
rag_system.document_chunks = {}
|
334 |
+
rag_system.embeddings_store = {}
|
335 |
+
|
336 |
+
return (
|
337 |
+
gr.update(value="<div class='pdf-status pdf-success'>โ
๋ชจ๋ ๋ฌธ์๊ฐ ์ญ์ ๋์์ต๋๋ค</div>"),
|
338 |
+
gr.update(choices=[], value=[]),
|
339 |
+
gr.update(value=False)
|
340 |
+
)
|
341 |
|
342 |
def switch_model(model_choice):
|
343 |
+
"""Function to switch between models"""
|
344 |
+
return gr.update(visible=False), gr.update(visible=True), model_choice
|
|
|
|
|
|
|
345 |
|
346 |
+
def create_rag_context_display(query, selected_docs, top_k):
|
347 |
+
"""RAG ์ปจํ
์คํธ ํ์์ฉ HTML ์์ฑ"""
|
348 |
+
if not selected_docs:
|
349 |
+
return ""
|
350 |
|
351 |
+
doc_ids = [doc.split(":")[0] for doc in selected_docs]
|
352 |
+
chunks = rag_system.search_relevant_chunks(query, doc_ids, top_k)
|
353 |
+
|
354 |
+
if not chunks:
|
355 |
+
return ""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
356 |
|
357 |
+
html = "<div class='rag-context'><strong>๐ ์ฐธ๊ณ ๋ฌธ์:</strong><br>"
|
358 |
+
for i, chunk in enumerate(chunks, 1):
|
359 |
+
html += f"<br>{i}. {chunk['doc_name']} (์ ์ฌ๋: {chunk['similarity']:.2f})<br>"
|
360 |
+
html += f"<small>{chunk['content'][:200]}...</small><br>"
|
361 |
+
html += "</div>"
|
362 |
+
|
363 |
+
return html
|
364 |
|
365 |
+
# Main interface
|
366 |
with gr.Blocks(fill_height=True, theme="Nymbo/Nymbo_Theme", css=custom_css) as demo:
|
367 |
+
# JavaScript to handle message passing
|
368 |
+
gr.HTML("""
|
369 |
+
<script>
|
370 |
+
function sendToModel(processedMsg) {
|
371 |
+
// This function would send the processed message to the model
|
372 |
+
console.log("Sending to model:", processedMsg);
|
373 |
+
}
|
374 |
+
</script>
|
375 |
+
""")
|
376 |
+
|
377 |
with gr.Row():
|
378 |
+
# Sidebar
|
379 |
with gr.Column(scale=1):
|
380 |
with gr.Group(elem_classes="main-container"):
|
381 |
+
gr.Markdown("# ๐ Inference Provider + RAG")
|
382 |
gr.Markdown(
|
383 |
+
"OpenAI GPT-OSS models with PDF RAG support. "
|
384 |
+
"Sign in with your Hugging Face account to use this API."
|
385 |
)
|
386 |
|
387 |
+
# Model selection
|
388 |
model_dropdown = gr.Dropdown(
|
389 |
choices=["openai/gpt-oss-120b", "openai/gpt-oss-20b"],
|
390 |
value="openai/gpt-oss-120b",
|
391 |
+
label="๐ Select Model",
|
392 |
+
info="Choose between different model sizes"
|
393 |
)
|
394 |
|
395 |
+
# Login button
|
396 |
login_button = gr.LoginButton("Sign in with Hugging Face", size="lg")
|
|
|
397 |
|
398 |
+
# Reload button to apply model change
|
399 |
+
reload_btn = gr.Button("๐ Apply Model Change", variant="primary", size="lg")
|
400 |
+
|
401 |
+
# RAG Settings
|
402 |
+
with gr.Accordion("๐ PDF RAG Settings", open=True):
|
403 |
pdf_upload = gr.File(
|
404 |
+
label="Upload PDF",
|
405 |
file_types=[".pdf"],
|
406 |
type="filepath"
|
407 |
)
|
408 |
|
409 |
upload_status = gr.HTML(
|
410 |
+
value="<div class='pdf-status pdf-info'>๐ค PDF๋ฅผ ์
๋ก๋ํ์ฌ ๋ฌธ์ ๊ธฐ๋ฐ ๋ต๋ณ์ ๋ฐ์ผ์ธ์</div>"
|
411 |
)
|
412 |
|
413 |
document_list = gr.CheckboxGroup(
|
414 |
choices=[],
|
415 |
label="๐ ์
๋ก๋๋ ๋ฌธ์",
|
416 |
+
info="์ฐธ๊ณ ํ ๋ฌธ์๋ฅผ ์ ํํ์ธ์"
|
417 |
)
|
418 |
|
419 |
+
clear_btn = gr.Button("๐๏ธ ๋ชจ๋ ๋ฌธ์ ์ญ์ ", size="sm")
|
|
|
|
|
420 |
|
421 |
enable_rag = gr.Checkbox(
|
422 |
label="RAG ํ์ฑํ",
|
423 |
value=False,
|
424 |
+
info="์ ํํ ๋ฌธ์๋ฅผ ์ฐธ๊ณ ํ์ฌ ๋ต๋ณ ์์ฑ"
|
425 |
)
|
426 |
|
427 |
+
top_k_chunks = gr.Slider(
|
428 |
+
minimum=1,
|
429 |
+
maximum=5,
|
430 |
+
value=3,
|
431 |
+
step=1,
|
432 |
+
label="์ฐธ์กฐ ์ฒญํฌ ์",
|
433 |
+
info="๋ต๋ณ ์์ฑ์ ์ฐธ๊ณ ํ ๋ฌธ์ ์กฐ๊ฐ ๊ฐ์"
|
434 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
435 |
|
436 |
+
# Additional options
|
437 |
+
with gr.Accordion("โ๏ธ Advanced Options", open=False):
|
438 |
+
gr.Markdown("*These options will be available after model implementation*")
|
439 |
temperature = gr.Slider(
|
440 |
minimum=0,
|
441 |
maximum=2,
|
|
|
451 |
label="Max Tokens"
|
452 |
)
|
453 |
|
454 |
+
# Main chat area
|
455 |
with gr.Column(scale=3):
|
456 |
with gr.Group(elem_classes="main-container"):
|
457 |
gr.Markdown("## ๐ฌ Chat Interface")
|
458 |
|
459 |
# RAG ์ํ ํ์
|
460 |
+
rag_status = gr.HTML(
|
461 |
+
value="<div class='pdf-status pdf-info'>๐ RAG: <strong>๋นํ์ฑํ</strong></div>"
|
462 |
+
)
|
|
|
463 |
|
464 |
+
# RAG ์ปจํ
์คํธ ํ์ ์์ญ
|
465 |
+
rag_context_display = gr.HTML(value="", visible=False)
|
466 |
+
|
467 |
+
# Container for model interfaces
|
468 |
with gr.Column(visible=True) as model_120b_container:
|
469 |
gr.Markdown("### Model: openai/gpt-oss-120b")
|
470 |
+
|
471 |
+
# RAG ์ฒ๋ฆฌ๋ฅผ ์ํ ์ปค์คํ
์ธํฐํ์ด์ค
|
472 |
+
with gr.Group():
|
473 |
+
# ์ฌ์ฉ์ ์
๋ ฅ ํ
์คํธ๋ฐ์ค
|
474 |
+
user_input = gr.Textbox(
|
475 |
+
label="๋ฉ์์ง ์
๋ ฅ",
|
476 |
+
placeholder="๋ฌธ์์ ๋ํด ์ง๋ฌธํ๊ฑฐ๋ ์ผ๋ฐ ๋ํ๋ฅผ ์์ํ์ธ์...",
|
477 |
+
lines=2
|
478 |
+
)
|
479 |
+
|
480 |
+
with gr.Row():
|
481 |
+
send_btn = gr.Button("๐ค ์ ์ก", variant="primary")
|
482 |
+
clear_chat_btn = gr.Button("๐๏ธ ๋ํ ์ด๊ธฐํ")
|
483 |
+
|
484 |
+
# ์๋ณธ ๋ชจ๋ธ ๋ก๋
|
485 |
+
original_model = gr.load(
|
486 |
+
"models/openai/gpt-oss-120b",
|
487 |
+
accept_token=login_button,
|
488 |
+
provider="fireworks-ai"
|
489 |
+
)
|
490 |
|
491 |
with gr.Column(visible=False) as model_20b_container:
|
492 |
gr.Markdown("### Model: openai/gpt-oss-20b")
|
493 |
+
|
494 |
+
with gr.Group():
|
495 |
+
# ์ฌ์ฉ์ ์
๋ ฅ ํ
์คํธ๋ฐ์ค (20b์ฉ)
|
496 |
+
user_input_20b = gr.Textbox(
|
497 |
+
label="๋ฉ์์ง ์
๋ ฅ",
|
498 |
+
placeholder="๋ฌธ์์ ๋ํด ์ง๋ฌธํ๊ฑฐ๋ ์ผ๋ฐ ๋ํ๋ฅผ ์์ํ์ธ์...",
|
499 |
+
lines=2
|
500 |
+
)
|
501 |
+
|
502 |
+
with gr.Row():
|
503 |
+
send_btn_20b = gr.Button("๐ค ์ ์ก", variant="primary")
|
504 |
+
clear_chat_btn_20b = gr.Button("๐๏ธ ๋ํ ์ด๊ธฐํ")
|
505 |
+
|
506 |
+
# ์๋ณธ ๋ชจ๋ธ ๋ก๋
|
507 |
+
original_model_20b = gr.load(
|
508 |
+
"models/openai/gpt-oss-20b",
|
509 |
+
accept_token=login_button,
|
510 |
+
provider="fireworks-ai"
|
511 |
+
)
|
512 |
|
513 |
+
# Event Handlers
|
514 |
|
515 |
+
# PDF ์
๋ก๋
|
516 |
pdf_upload.upload(
|
517 |
fn=upload_pdf,
|
518 |
inputs=[pdf_upload],
|
519 |
outputs=[upload_status, document_list, enable_rag]
|
520 |
)
|
521 |
|
522 |
+
# ๋ฌธ์ ์ญ์
|
523 |
clear_btn.click(
|
524 |
fn=clear_documents,
|
525 |
outputs=[upload_status, document_list, enable_rag]
|
|
|
528 |
# RAG ์ํ ์
๋ฐ์ดํธ
|
529 |
enable_rag.change(
|
530 |
fn=lambda x: gr.update(
|
531 |
+
value=f"<div class='pdf-status pdf-info'>๐ RAG: <strong>{'ํ์ฑํ' if x else '๋นํ์ฑํ'}</strong></div>"
|
532 |
),
|
533 |
inputs=[enable_rag],
|
534 |
outputs=[rag_status]
|
|
|
540 |
inputs=[model_dropdown],
|
541 |
outputs=[model_120b_container, model_20b_container, current_model]
|
542 |
).then(
|
543 |
+
fn=lambda: gr.Info("Model switched successfully!"),
|
544 |
inputs=[],
|
545 |
outputs=[]
|
546 |
)
|
547 |
|
548 |
+
# Update visibility based on dropdown selection
|
549 |
+
def update_visibility(model_choice):
|
550 |
+
if model_choice == "openai/gpt-oss-120b":
|
551 |
+
return gr.update(visible=True), gr.update(visible=False)
|
552 |
+
else:
|
553 |
+
return gr.update(visible=False), gr.update(visible=True)
|
554 |
|
555 |
+
model_dropdown.change(
|
556 |
+
fn=update_visibility,
|
557 |
+
inputs=[model_dropdown],
|
558 |
+
outputs=[model_120b_container, model_20b_container]
|
559 |
)
|
560 |
|
561 |
+
# ๋ฉ์์ง ์ ์ก ์ฒ๋ฆฌ (RAG ํฌํจ)
|
562 |
+
def process_message(message, enable_rag, selected_docs, top_k):
|
563 |
+
"""๋ฉ์์ง๋ฅผ RAG๋ก ์ฒ๋ฆฌํ์ฌ ๋ชจ๋ธ์ ์ ์ก"""
|
564 |
+
if enable_rag and selected_docs:
|
565 |
+
doc_ids = [doc.split(":")[0] for doc in selected_docs]
|
566 |
+
enhanced_message = rag_system.create_rag_prompt(message, doc_ids, top_k)
|
567 |
+
context_html = create_rag_context_display(message, selected_docs, top_k)
|
568 |
+
return enhanced_message, gr.update(value=context_html, visible=True)
|
569 |
+
else:
|
570 |
+
return message, gr.update(value="", visible=False)
|
571 |
+
|
572 |
+
# 120b ๋ชจ๋ธ์ฉ ์ด๋ฒคํธ
|
573 |
+
send_btn.click(
|
574 |
+
fn=process_message,
|
575 |
+
inputs=[user_input, enable_rag, document_list, top_k_chunks],
|
576 |
+
outputs=[user_input, rag_context_display]
|
577 |
)
|
578 |
|
579 |
+
user_input.submit(
|
580 |
+
fn=process_message,
|
581 |
+
inputs=[user_input, enable_rag, document_list, top_k_chunks],
|
582 |
+
outputs=[user_input, rag_context_display]
|
|
|
583 |
)
|
584 |
|
585 |
+
# 20b ๋ชจ๋ธ์ฉ ์ด๋ฒคํธ
|
586 |
send_btn_20b.click(
|
587 |
+
fn=process_message,
|
588 |
+
inputs=[user_input_20b, enable_rag, document_list, top_k_chunks],
|
589 |
+
outputs=[user_input_20b, rag_context_display]
|
590 |
)
|
591 |
|
592 |
+
user_input_20b.submit(
|
593 |
+
fn=process_message,
|
594 |
+
inputs=[user_input_20b, enable_rag, document_list, top_k_chunks],
|
595 |
+
outputs=[user_input_20b, rag_context_display]
|
596 |
)
|
597 |
|
598 |
+
demo.launch()
|
|