Spaces:
Running
on
Zero
Running
on
Zero
| import os | |
| import re | |
| import random | |
| from http import HTTPStatus | |
| from typing import Dict, List, Optional, Tuple | |
| import base64 | |
| import anthropic | |
| import openai | |
| import asyncio | |
| import time | |
| from functools import partial | |
| import json | |
| import gradio as gr | |
| import modelscope_studio.components.base as ms | |
| import modelscope_studio.components.legacy as legacy | |
| import modelscope_studio.components.antd as antd | |
| import html | |
| import urllib.parse | |
| from huggingface_hub import HfApi, create_repo, hf_hub_download | |
| import string | |
| import requests | |
| from selenium import webdriver | |
| from selenium.webdriver.support.ui import WebDriverWait | |
| from selenium.webdriver.support import expected_conditions as EC | |
| from selenium.webdriver.common.by import By | |
| from selenium.common.exceptions import WebDriverException, TimeoutException | |
| from PIL import Image | |
| from io import BytesIO | |
| from datetime import datetime | |
| import spaces | |
| from safetensors.torch import load_file | |
| from diffusers import FluxPipeline | |
| import torch | |
| from os import path # ์ด ์ค์ ์ถ๊ฐ | |
| # ์บ์ ๊ฒฝ๋ก ์ค์ | |
| cache_path = path.join(path.dirname(path.abspath(__file__)), "models") | |
| os.environ["TRANSFORMERS_CACHE"] = cache_path | |
| os.environ["HF_HUB_CACHE"] = cache_path | |
| os.environ["HF_HOME"] = cache_path | |
| # Hugging Face ํ ํฐ ์ค์ | |
| HF_TOKEN = os.getenv("HF_TOKEN") | |
| if not HF_TOKEN: | |
| print("Warning: HF_TOKEN not found in environment variables") | |
| # FLUX ๋ชจ๋ธ ์ด๊ธฐํ | |
| if not path.exists(cache_path): | |
| os.makedirs(cache_path, exist_ok=True) | |
| try: | |
| pipe = FluxPipeline.from_pretrained( | |
| "black-forest-labs/FLUX.1-dev", | |
| torch_dtype=torch.bfloat16, | |
| use_auth_token=HF_TOKEN # Hugging Face ํ ํฐ ์ถ๊ฐ | |
| ) | |
| pipe.load_lora_weights( | |
| hf_hub_download( | |
| "ByteDance/Hyper-SD", | |
| "Hyper-FLUX.1-dev-8steps-lora.safetensors", | |
| token=HF_TOKEN # Hugging Face ํ ํฐ ์ถ๊ฐ | |
| ) | |
| ) | |
| pipe.fuse_lora(lora_scale=0.125) | |
| pipe.to(device="cuda", dtype=torch.bfloat16) | |
| print("Successfully initialized FLUX model with authentication") | |
| except Exception as e: | |
| print(f"Error initializing FLUX model: {str(e)}") | |
| pipe = None | |
| # ์ด๋ฏธ์ง ์์ฑ ํจ์ ์ถ๊ฐ | |
| def generate_image(prompt, height=512, width=512, steps=8, scales=3.5, seed=3413): | |
| with torch.inference_mode(), torch.autocast("cuda", dtype=torch.bfloat16): | |
| return pipe( | |
| prompt=[prompt], | |
| generator=torch.Generator().manual_seed(int(seed)), | |
| num_inference_steps=int(steps), | |
| guidance_scale=float(scales), | |
| height=int(height), | |
| width=int(width), | |
| max_sequence_length=256 | |
| ).images[0] | |
| # SystemPrompt ๋ถ๋ถ์ ์ง์ ์ ์ | |
| SystemPrompt = """You are 'MOUSE-I', an advanced AI visualization expert. Your mission is to transform every response into a visually stunning and highly informative presentation. | |
| Core Capabilities: | |
| - Transform text responses into rich visual experiences | |
| - Create interactive data visualizations and charts | |
| - Design beautiful and intuitive user interfaces | |
| - Utilize engaging animations and transitions | |
| - Present information in a clear, structured manner | |
| Visual Elements to Include: | |
| - Charts & Graphs (using Chart.js, D3.js) | |
| - Interactive Data Visualizations | |
| - Modern UI Components | |
| - Engaging Animations | |
| - Informative Icons & Emojis | |
| - Color-coded Information Blocks | |
| - Progress Indicators | |
| - Timeline Visualizations | |
| - Statistical Representations | |
| - Comparison Tables | |
| Technical Requirements: | |
| - Modern HTML5/CSS3/JavaScript | |
| - Responsive Design | |
| - Interactive Elements | |
| - Clean Typography | |
| - Professional Color Schemes | |
| - Smooth Animations | |
| - Cross-browser Compatibility | |
| Libraries Available: | |
| - Chart.js for Data Visualization | |
| - D3.js for Complex Graphics | |
| - Bootstrap for Layout | |
| - jQuery for Interactions | |
| - Three.js for 3D Elements | |
| Design Principles: | |
| - Visual Hierarchy | |
| - Clear Information Flow | |
| - Consistent Styling | |
| - Intuitive Navigation | |
| - Engaging User Experience | |
| - Accessibility Compliance | |
| Remember to: | |
| - Present data in the most visually appealing way | |
| - Use appropriate charts for different data types | |
| - Include interactive elements where relevant | |
| - Maintain a professional and modern aesthetic | |
| - Ensure responsive design for all devices | |
| Return only HTML code wrapped in code blocks, focusing on creating visually stunning and informative presentations. | |
| """ | |
| from config import DEMO_LIST | |
| class Role: | |
| SYSTEM = "system" | |
| USER = "user" | |
| ASSISTANT = "assistant" | |
| History = List[Tuple[str, str]] | |
| Messages = List[Dict[str, str]] | |
| # ์ด๋ฏธ์ง ์บ์๋ฅผ ๋ฉ๋ชจ๋ฆฌ์ ์ ์ฅ | |
| IMAGE_CACHE = {} | |
| # boost_prompt ํจ์์ handle_boost ํจ์๋ฅผ ์ถ๊ฐํฉ๋๋ค | |
| def boost_prompt(prompt: str) -> str: | |
| if not prompt: | |
| return "" | |
| # ์ฆ๊ฐ์ ์ํ ์์คํ ํ๋กฌํํธ | |
| boost_system_prompt = """ | |
| ๋น์ ์ ์น ๊ฐ๋ฐ ํ๋กฌํํธ ์ ๋ฌธ๊ฐ์ ๋๋ค. | |
| ์ฃผ์ด์ง ํ๋กฌํํธ๋ฅผ ๋ถ์ํ์ฌ ๋ ์์ธํ๊ณ ์ ๋ฌธ์ ์ธ ์๊ตฌ์ฌํญ์ผ๋ก ํ์ฅํ๋, | |
| ์๋ ์๋์ ๋ชฉ์ ์ ๊ทธ๋๋ก ์ ์งํ๋ฉด์ ๋ค์ ๊ด์ ๋ค์ ๊ณ ๋ คํ์ฌ ์ฆ๊ฐํ์ญ์์ค: | |
| 1. ๊ธฐ์ ์ ๊ตฌํ ์์ธ | |
| 2. UI/UX ๋์์ธ ์์ | |
| 3. ์ฌ์ฉ์ ๊ฒฝํ ์ต์ ํ | |
| 4. ์ฑ๋ฅ๊ณผ ๋ณด์ | |
| 5. ์ ๊ทผ์ฑ๊ณผ ํธํ์ฑ | |
| ๊ธฐ์กด SystemPrompt์ ๋ชจ๋ ๊ท์น์ ์ค์ํ๋ฉด์ ์ฆ๊ฐ๋ ํ๋กฌํํธ๋ฅผ ์์ฑํ์ญ์์ค. | |
| """ | |
| try: | |
| # Claude API ์๋ | |
| try: | |
| response = claude_client.messages.create( | |
| model="claude-3-5-sonnet-20241022", | |
| max_tokens=2000, | |
| messages=[{ | |
| "role": "user", | |
| "content": f"๋ค์ ํ๋กฌํํธ๋ฅผ ๋ถ์ํ๊ณ ์ฆ๊ฐํ์์ค: {prompt}" | |
| }] | |
| ) | |
| if hasattr(response, 'content') and len(response.content) > 0: | |
| return response.content[0].text | |
| raise Exception("Claude API ์๋ต ํ์ ์ค๋ฅ") | |
| except Exception as claude_error: | |
| print(f"Claude API ์๋ฌ, OpenAI๋ก ์ ํ: {str(claude_error)}") | |
| # OpenAI API ์๋ | |
| completion = openai_client.chat.completions.create( | |
| model="gpt-4", | |
| messages=[ | |
| {"role": "system", "content": boost_system_prompt}, | |
| {"role": "user", "content": f"๋ค์ ํ๋กฌํํธ๋ฅผ ๋ถ์ํ๊ณ ์ฆ๊ฐํ์์ค: {prompt}"} | |
| ], | |
| max_tokens=2000, | |
| temperature=0.7 | |
| ) | |
| if completion.choices and len(completion.choices) > 0: | |
| return completion.choices[0].message.content | |
| raise Exception("OpenAI API ์๋ต ํ์ ์ค๋ฅ") | |
| except Exception as e: | |
| print(f"ํ๋กฌํํธ ์ฆ๊ฐ ์ค ์ค๋ฅ ๋ฐ์: {str(e)}") | |
| return prompt # ์ค๋ฅ ๋ฐ์์ ์๋ณธ ํ๋กฌํํธ ๋ฐํ | |
| # Boost ๋ฒํผ ์ด๋ฒคํธ ํธ๋ค๋ฌ | |
| def handle_boost(prompt: str): | |
| try: | |
| boosted_prompt = boost_prompt(prompt) | |
| return boosted_prompt, gr.update(active_key="empty") | |
| except Exception as e: | |
| print(f"Boost ์ฒ๋ฆฌ ์ค ์ค๋ฅ: {str(e)}") | |
| return prompt, gr.update(active_key="empty") | |
| def get_image_base64(image_path): | |
| if image_path in IMAGE_CACHE: | |
| return IMAGE_CACHE[image_path] | |
| try: | |
| with open(image_path, "rb") as image_file: | |
| encoded_string = base64.b64encode(image_file.read()).decode() | |
| IMAGE_CACHE[image_path] = encoded_string | |
| return encoded_string | |
| except: | |
| return IMAGE_CACHE.get('default.png', '') | |
| def history_to_messages(history: History, system: str) -> Messages: | |
| messages = [{'role': Role.SYSTEM, 'content': system}] | |
| for h in history: | |
| messages.append({'role': Role.USER, 'content': h[0]}) | |
| messages.append({'role': Role.ASSISTANT, 'content': h[1]}) | |
| return messages | |
| def messages_to_history(messages: Messages) -> History: | |
| assert messages[0]['role'] == Role.SYSTEM | |
| history = [] | |
| for q, r in zip(messages[1::2], messages[2::2]): | |
| history.append([q['content'], r['content']]) | |
| return history | |
| # API ํด๋ผ์ด์ธํธ ์ด๊ธฐํ | |
| YOUR_ANTHROPIC_TOKEN = os.getenv('ANTHROPIC_API_KEY', '') # ๊ธฐ๋ณธ๊ฐ ์ถ๊ฐ | |
| YOUR_OPENAI_TOKEN = os.getenv('OPENAI_API_KEY', '') # ๊ธฐ๋ณธ๊ฐ ์ถ๊ฐ | |
| # API ํค ๊ฒ์ฆ | |
| if not YOUR_ANTHROPIC_TOKEN or not YOUR_OPENAI_TOKEN: | |
| print("Warning: API keys not found in environment variables") | |
| # API ํด๋ผ์ด์ธํธ ์ด๊ธฐํ ์ ์์ธ ์ฒ๋ฆฌ ์ถ๊ฐ | |
| try: | |
| claude_client = anthropic.Anthropic(api_key=YOUR_ANTHROPIC_TOKEN) | |
| openai_client = openai.OpenAI(api_key=YOUR_OPENAI_TOKEN) | |
| except Exception as e: | |
| print(f"Error initializing API clients: {str(e)}") | |
| claude_client = None | |
| openai_client = None | |
| # try_claude_api ํจ์ ์์ | |
| async def try_claude_api(system_message, claude_messages, timeout=15): | |
| try: | |
| start_time = time.time() | |
| with claude_client.messages.stream( | |
| model="claude-3-5-sonnet-20241022", | |
| max_tokens=7860, | |
| system=system_message, | |
| messages=claude_messages | |
| ) as stream: | |
| collected_content = "" | |
| for chunk in stream: | |
| current_time = time.time() | |
| if current_time - start_time > timeout: | |
| print(f"Claude API response time: {current_time - start_time:.2f} seconds") | |
| raise TimeoutError("Claude API timeout") | |
| if chunk.type == "content_block_delta": | |
| collected_content += chunk.delta.text | |
| yield collected_content | |
| await asyncio.sleep(0) | |
| start_time = current_time | |
| except Exception as e: | |
| print(f"Claude API error: {str(e)}") | |
| raise e | |
| async def try_openai_api(openai_messages): | |
| try: | |
| stream = openai_client.chat.completions.create( | |
| model="gpt-4o", | |
| messages=openai_messages, | |
| stream=True, | |
| max_tokens=4096, | |
| temperature=0.7 | |
| ) | |
| collected_content = "" | |
| for chunk in stream: | |
| if chunk.choices[0].delta.content is not None: | |
| collected_content += chunk.choices[0].delta.content | |
| yield collected_content | |
| except Exception as e: | |
| print(f"OpenAI API error: {str(e)}") | |
| raise e | |
| class Demo: | |
| def __init__(self): | |
| pass | |
| async def generation_code(self, query: Optional[str], _setting: Dict[str, str]): | |
| if not query or query.strip() == '': | |
| query = get_random_placeholder() | |
| # ์ด๋ฏธ์ง ์์ฑ์ด ํ์ํ์ง ํ์ธ | |
| needs_image = '์ด๋ฏธ์ง' in query or '๊ทธ๋ฆผ' in query or 'image' in query.lower() | |
| image_prompt = None | |
| # ์ด๋ฏธ์ง ํ๋กฌํํธ ์ถ์ถ | |
| if needs_image: | |
| for keyword in ['์ด๋ฏธ์ง:', '๊ทธ๋ฆผ:', 'image:']: | |
| if keyword in query.lower(): | |
| image_prompt = query.split(keyword)[1].strip() | |
| break | |
| if not image_prompt: | |
| image_prompt = query # ๋ช ์์ ํ๋กฌํํธ๊ฐ ์์ผ๋ฉด ์ ์ฒด ์ฟผ๋ฆฌ ์ฌ์ฉ | |
| messages = [{'role': Role.SYSTEM, 'content': _setting['system']}] | |
| messages.append({'role': Role.USER, 'content': query}) | |
| system_message = messages[0]['content'] | |
| claude_messages = [{"role": "user", "content": query}] | |
| openai_messages = [ | |
| {"role": "system", "content": system_message}, | |
| {"role": "user", "content": query} | |
| ] | |
| try: | |
| yield [ | |
| "", | |
| None, | |
| gr.update(active_key="loading"), | |
| gr.update(open=True) | |
| ] | |
| await asyncio.sleep(0) | |
| collected_content = None | |
| try: | |
| async for content in try_claude_api(system_message, claude_messages): | |
| yield [ | |
| "", | |
| None, | |
| gr.update(active_key="loading"), | |
| gr.update(open=True) | |
| ] | |
| await asyncio.sleep(0) | |
| collected_content = content | |
| except Exception as claude_error: | |
| print(f"Falling back to OpenAI API due to Claude error: {str(claude_error)}") | |
| async for content in try_openai_api(openai_messages): | |
| yield [ | |
| "", | |
| None, | |
| gr.update(active_key="loading"), | |
| gr.update(open=True) | |
| ] | |
| await asyncio.sleep(0) | |
| collected_content = content | |
| if collected_content: | |
| # ์ด๋ฏธ์ง ์์ฑ์ด ํ์ํ ๊ฒฝ์ฐ | |
| if needs_image and image_prompt: | |
| try: | |
| print(f"Generating image for prompt: {image_prompt}") | |
| # FLUX ๋ชจ๋ธ์ ์ฌ์ฉํ์ฌ ์ด๋ฏธ์ง ์์ฑ | |
| if pipe is not None: | |
| image = generate_image( | |
| prompt=image_prompt, | |
| height=512, | |
| width=512, | |
| steps=8, | |
| scales=3.5, | |
| seed=random.randint(1, 10000) | |
| ) | |
| # ์ด๋ฏธ์ง๋ฅผ Base64๋ก ์ธ์ฝ๋ฉ | |
| buffered = BytesIO() | |
| image.save(buffered, format="PNG") | |
| img_str = base64.b64encode(buffered.getvalue()).decode() | |
| # HTML์ ์ด๋ฏธ์ง ์ถ๊ฐ | |
| image_html = f''' | |
| <div class="generated-image" style="margin: 20px 0; text-align: center;"> | |
| <h3 style="color: #333; margin-bottom: 10px;">Generated Image:</h3> | |
| <img src="data:image/png;base64,{img_str}" | |
| style="max-width: 100%; | |
| border-radius: 10px; | |
| box-shadow: 0 4px 8px rgba(0,0,0,0.1);"> | |
| <p style="color: #666; margin-top: 10px; font-style: italic;"> | |
| Prompt: {html.escape(image_prompt)} | |
| </p> | |
| </div> | |
| ''' | |
| # HTML ์๋ต์ ์ด๋ฏธ์ง ์ฝ์ | |
| if '```html' in collected_content: | |
| # HTML ์ฝ๋ ๋ธ๋ก ๋ด๋ถ์ ์ด๋ฏธ์ง ์ถ๊ฐ | |
| collected_content = collected_content.replace('```html\n', f'```html\n{image_html}') | |
| else: | |
| # HTML ์ฝ๋ ๋ธ๋ก์ผ๋ก ๊ฐ์ธ์ ์ด๋ฏธ์ง ์ถ๊ฐ | |
| collected_content = f'```html\n{image_html}\n```\n{collected_content}' | |
| print("Image generation successful") | |
| else: | |
| raise Exception("FLUX model not initialized") | |
| except Exception as e: | |
| print(f"Image generation error: {str(e)}") | |
| error_message = f''' | |
| <div style="color: #ff4d4f; padding: 10px; margin: 10px 0; | |
| border-left: 4px solid #ff4d4f; background: #fff2f0;"> | |
| <p>Failed to generate image: {str(e)}</p> | |
| </div> | |
| ''' | |
| if '```html' in collected_content: | |
| collected_content = collected_content.replace('```html\n', f'```html\n{error_message}') | |
| else: | |
| collected_content = f'```html\n{error_message}\n```\n{collected_content}' | |
| # ์ต์ข ๊ฒฐ๊ณผ ํ์ | |
| yield [ | |
| collected_content, | |
| send_to_sandbox(remove_code_block(collected_content)), | |
| gr.update(active_key="render"), | |
| gr.update(open=False) | |
| ] | |
| else: | |
| raise ValueError("No content was generated from either API") | |
| except Exception as e: | |
| print(f"Error details: {str(e)}") | |
| raise ValueError(f'Error calling APIs: {str(e)}') | |
| def clear_history(self): | |
| return [] | |
| def remove_code_block(text): | |
| pattern = r'```html\n(.+?)\n```' | |
| match = re.search(pattern, text, re.DOTALL) | |
| if match: | |
| return match.group(1).strip() | |
| else: | |
| return text.strip() | |
| def history_render(history: History): | |
| return gr.update(open=True), history | |
| def send_to_sandbox(code): | |
| encoded_html = base64.b64encode(code.encode('utf-8')).decode('utf-8') | |
| data_uri = f"data:text/html;charset=utf-8;base64,{encoded_html}" | |
| return f""" | |
| <iframe | |
| src="{data_uri}" | |
| style="width:100%; height:800px; border:none;" | |
| frameborder="0" | |
| ></iframe> | |
| """ | |
| # ๋ฐฐํฌ ๊ด๋ จ ํจ์ ์ถ๊ฐ | |
| def generate_space_name(): | |
| """6์๋ฆฌ ๋๋ค ์๋ฌธ ์ด๋ฆ ์์ฑ""" | |
| letters = string.ascii_lowercase | |
| return ''.join(random.choice(letters) for i in range(6)) | |
| def deploy_to_vercel(code: str): | |
| try: | |
| token = "A8IFZmgW2cqA4yUNlLPnci0N" | |
| if not token: | |
| return "Vercel ํ ํฐ์ด ์ค์ ๋์ง ์์์ต๋๋ค." | |
| # 6์๋ฆฌ ์๋ฌธ ํ๋ก์ ํธ ์ด๋ฆ ์์ฑ | |
| project_name = ''.join(random.choice(string.ascii_lowercase) for i in range(6)) | |
| # Vercel API ์๋ํฌ์ธํธ | |
| deploy_url = "https://api.vercel.com/v13/deployments" | |
| # ํค๋ ์ค์ | |
| headers = { | |
| "Authorization": f"Bearer {token}", | |
| "Content-Type": "application/json" | |
| } | |
| # package.json ํ์ผ ์์ฑ | |
| package_json = { | |
| "name": project_name, | |
| "version": "1.0.0", | |
| "private": True, # true -> True๋ก ์์ | |
| "dependencies": { | |
| "vite": "^5.0.0" | |
| }, | |
| "scripts": { | |
| "dev": "vite", | |
| "build": "echo 'No build needed' && mkdir -p dist && cp index.html dist/", | |
| "preview": "vite preview" | |
| } | |
| } | |
| # ๋ฐฐํฌํ ํ์ผ ๋ฐ์ดํฐ ๊ตฌ์กฐ | |
| files = [ | |
| { | |
| "file": "index.html", | |
| "data": code | |
| }, | |
| { | |
| "file": "package.json", | |
| "data": json.dumps(package_json, indent=2) # indent ์ถ๊ฐ๋ก ๊ฐ๋ ์ฑ ํฅ์ | |
| } | |
| ] | |
| # ํ๋ก์ ํธ ์ค์ | |
| project_settings = { | |
| "buildCommand": "npm run build", | |
| "outputDirectory": "dist", | |
| "installCommand": "npm install", | |
| "framework": None | |
| } | |
| # ๋ฐฐํฌ ์์ฒญ ๋ฐ์ดํฐ | |
| deploy_data = { | |
| "name": project_name, | |
| "files": files, | |
| "target": "production", | |
| "projectSettings": project_settings | |
| } | |
| deploy_response = requests.post(deploy_url, headers=headers, json=deploy_data) | |
| if deploy_response.status_code != 200: | |
| return f"๋ฐฐํฌ ์คํจ: {deploy_response.text}" | |
| # URL ํ์ ์์ - 6์๋ฆฌ.vercel.app ํํ๋ก ๋ฐํ | |
| deployment_url = f"{project_name}.vercel.app" | |
| time.sleep(5) | |
| return f"""๋ฐฐํฌ ์๋ฃ! <a href="https://{deployment_url}" target="_blank" style="color: #1890ff; text-decoration: underline; cursor: pointer;">https://{deployment_url}</a>""" | |
| except Exception as e: | |
| return f"๋ฐฐํฌ ์ค ์ค๋ฅ ๋ฐ์: {str(e)}" | |
| theme = gr.themes.Soft() | |
| def get_random_placeholder(): | |
| return random.choice(DEMO_LIST)['description'] | |
| def update_placeholder(): | |
| return gr.update(placeholder=get_random_placeholder()) | |
| def create_main_interface(): | |
| """๋ฉ์ธ ์ธํฐํ์ด์ค ์์ฑ ํจ์""" | |
| def execute_code(query: str): | |
| if not query or query.strip() == '': | |
| return None, gr.update(active_key="empty") | |
| try: | |
| if '```html' in query and '```' in query: | |
| code = remove_code_block(query) | |
| else: | |
| code = query.strip() | |
| return send_to_sandbox(code), gr.update(active_key="render") | |
| except Exception as e: | |
| print(f"Error executing code: {str(e)}") | |
| return None, gr.update(active_key="empty") | |
| # CSS ํ์ผ ๋ด์ฉ์ ์ง์ ์ ์ฉ | |
| with open('app.css', 'r', encoding='utf-8') as f: | |
| custom_css = f.read() | |
| demo = gr.Blocks(css=custom_css + """ | |
| .empty-content { | |
| padding: 40px !important; | |
| background: #f8f9fa !important; | |
| border-radius: 10px !important; | |
| margin: 20px !important; | |
| } | |
| .container { | |
| background: #f0f0f0; | |
| min-height: 100vh; | |
| padding: 20px; | |
| display: flex; | |
| justify-content: center; | |
| align-items: center; | |
| font-family: -apple-system, BlinkMacSystemFont, sans-serif; | |
| } | |
| .app-window { | |
| background: white; | |
| border-radius: 10px; | |
| box-shadow: 0 20px 40px rgba(0,0,0,0.1); | |
| width: 100%; | |
| max-width: 1400px; | |
| overflow: hidden; | |
| } | |
| .window-header { | |
| background: #f0f0f0; | |
| padding: 12px 16px; | |
| display: flex; | |
| align-items: center; | |
| border-bottom: 1px solid #e0e0e0; | |
| } | |
| .window-controls { | |
| display: flex; | |
| gap: 8px; | |
| } | |
| .control { | |
| width: 12px; | |
| height: 12px; | |
| border-radius: 50%; | |
| cursor: pointer; | |
| } | |
| .control.close { background: #ff5f57; } | |
| .control.minimize { background: #febc2e; } | |
| .control.maximize { background: #28c840; } | |
| .window-title { | |
| flex: 1; | |
| text-align: center; | |
| color: #333; | |
| font-size: 14px; | |
| font-weight: 500; | |
| } | |
| .main-content { | |
| display: flex; | |
| height: calc(100vh - 100px); | |
| } | |
| .left-panel { | |
| width: 40%; | |
| border-right: 1px solid #e0e0e0; | |
| padding: 20px; | |
| display: flex; | |
| flex-direction: column; | |
| } | |
| .right-panel { | |
| width: 60%; | |
| background: #fff; | |
| position: relative; | |
| } | |
| .input-area { | |
| background: #f8f9fa; | |
| border-radius: 10px; | |
| padding: 20px; | |
| margin-top: 20px; | |
| } | |
| .button-group { | |
| display: flex; | |
| gap: 10px; | |
| margin-top: 20px; | |
| } | |
| .custom-button { | |
| background: #007aff; | |
| color: white; | |
| border: none; | |
| padding: 10px 20px; | |
| border-radius: 6px; | |
| cursor: pointer; | |
| transition: all 0.2s; | |
| } | |
| .custom-button:hover { | |
| background: #0056b3; | |
| } | |
| """, theme=theme) | |
| with demo: | |
| with gr.Tabs(elem_classes="main-tabs") as tabs: | |
| with gr.Tab("Visual AI Assistant", elem_id="mouse-tab", elem_classes="mouse-tab"): | |
| # SystemPrompt ์ค์ ์ ์ํ State ์ถ๊ฐ | |
| setting = gr.State({ | |
| "system": SystemPrompt, | |
| }) | |
| with ms.Application() as app: | |
| with antd.ConfigProvider(): | |
| with antd.Drawer(open=False, title="AI is Creating...", placement="left", width="750px") as code_drawer: | |
| gr.HTML(""" | |
| <div class="thinking-container"> | |
| <style> | |
| .custom-textarea { | |
| background: #f8f9fa !important; | |
| border: 1px solid #e0e0e0 !important; | |
| border-radius: 10px !important; | |
| padding: 15px !important; | |
| min-height: 150px !important; | |
| font-family: -apple-system, BlinkMacSystemFont, sans-serif !important; | |
| } | |
| .custom-textarea:focus { | |
| border-color: #007aff !important; | |
| box-shadow: 0 0 0 2px rgba(0,122,255,0.2) !important; | |
| } | |
| .thinking-container { | |
| text-align: center; | |
| padding: 20px; | |
| background: #f8f9fa; | |
| border-radius: 15px; | |
| font-family: -apple-system, BlinkMacSystemFont, sans-serif; | |
| } | |
| .progress-bar { | |
| width: 100%; | |
| height: 4px; | |
| background: #e9ecef; | |
| border-radius: 4px; | |
| margin: 20px 0; | |
| overflow: hidden; | |
| } | |
| .progress-bar-inner { | |
| width: 30%; | |
| height: 100%; | |
| background: linear-gradient(90deg, #007aff, #28c840); | |
| animation: progress 2s ease-in-out infinite; | |
| } | |
| .thinking-icon { | |
| font-size: 48px; | |
| margin: 20px 0; | |
| animation: bounce 1s ease infinite; | |
| } | |
| .tip-box { | |
| background: white; | |
| padding: 20px; | |
| border-radius: 10px; | |
| box-shadow: 0 4px 12px rgba(0,0,0,0.1); | |
| margin: 20px 0; | |
| transition: all 0.3s ease; | |
| } | |
| .status-text { | |
| color: #007aff; | |
| font-size: 18px; | |
| margin: 15px 0; | |
| animation: fade 1.5s ease infinite; | |
| } | |
| .icon-grid { | |
| display: grid; | |
| grid-template-columns: repeat(4, 1fr); | |
| gap: 15px; | |
| margin: 20px 0; | |
| } | |
| .icon-item { | |
| padding: 10px; | |
| background: rgba(0,122,255,0.1); | |
| border-radius: 8px; | |
| animation: pulse 2s ease infinite; | |
| } | |
| @keyframes progress { | |
| 0% { transform: translateX(-100%); } | |
| 100% { transform: translateX(400%); } | |
| } | |
| @keyframes bounce { | |
| 0%, 100% { transform: translateY(0); } | |
| 50% { transform: translateY(-10px); } | |
| } | |
| @keyframes fade { | |
| 0%, 100% { opacity: 1; } | |
| 50% { opacity: 0.6; } | |
| } | |
| @keyframes pulse { | |
| 0% { transform: scale(1); } | |
| 50% { transform: scale(1.05); } | |
| 100% { transform: scale(1); } | |
| } | |
| </style> | |
| <div class="thinking-icon">๐จ</div> | |
| <div class="status-text">Creating Your Visualization...</div> | |
| <div class="progress-bar"> | |
| <div class="progress-bar-inner"></div> | |
| </div> | |
| <div class="icon-grid"> | |
| <div class="icon-item">๐</div> | |
| <div class="icon-item">๐ฏ</div> | |
| <div class="icon-item">๐ก</div> | |
| <div class="icon-item">โจ</div> | |
| </div> | |
| <div class="tip-box"> | |
| <h3 style="color: #007aff; margin-bottom: 10px;">Did You Know?</h3> | |
| <div id="tip-content" style="font-size: 16px; line-height: 1.6;"></div> | |
| </div> | |
| <script> | |
| const tips = [ | |
| "MOUSE-I is creating responsive and interactive visualizations! ๐", | |
| "We're applying modern design principles for the best user experience! ๐จ", | |
| "Your content will be optimized for all devices! ๐ฑ", | |
| "Adding engaging animations to bring your data to life! โจ", | |
| "Crafting a beautiful presentation just for you! ๐ฏ", | |
| "Implementing interactive elements for better engagement! ๐ฎ", | |
| "Optimizing colors and layout for visual appeal! ๐ช", | |
| "Creating smooth transitions and animations! ๐" | |
| ]; | |
| function updateTip() { | |
| const tipElement = document.getElementById('tip-content'); | |
| if (tipElement) { | |
| const randomTip = tips[Math.floor(Math.random() * tips.length)]; | |
| tipElement.innerHTML = randomTip; | |
| tipElement.style.opacity = 0; | |
| setTimeout(() => { | |
| tipElement.style.transition = 'opacity 0.5s ease'; | |
| tipElement.style.opacity = 1; | |
| }, 100); | |
| } | |
| } | |
| updateTip(); | |
| setInterval(updateTip, 3000); | |
| </script> | |
| </div> | |
| """) | |
| code_output = legacy.Markdown(visible=False) | |
| # ๋ฉ์ธ ์ปจํ ์ธ ๋ฅผ ์ํ Row | |
| with antd.Row(gutter=[32, 12]) as layout: | |
| # ์ข์ธก ํจ๋ | |
| with antd.Col(span=24, md=8): | |
| with antd.Flex(vertical=True, gap="middle", wrap=True): | |
| # macOS ์คํ์ผ ์๋์ฐ ํค๋ | |
| header = gr.HTML(""" | |
| <div class="window-frame"> | |
| <div class="window-header"> | |
| <div class="window-controls"> | |
| <div class="control close"></div> | |
| <div class="control minimize"></div> | |
| <div class="control maximize"></div> | |
| </div> | |
| <div class="window-title"> | |
| <div class="window-address"> | |
| <div class="secure-icon">๐</div> | |
| <div class="url-bar">https://VIDraft-mouse-chat.hf.space</div> | |
| </div> | |
| </div> | |
| </div> | |
| <div class="app-content"> | |
| <img src="data:image/gif;base64,{}" width="360px" /> | |
| <h1 class="app-title">MOUSE-Chat Visual AI</h1> | |
| <p class="app-description">Creates visualized web pages from text input, and when you include keywords like "image:", "๊ทธ๋ฆผ:", or "image:" in your input, it automatically generates AI images based on the description and incorporates them into the web page. | |
| Use the "Generate" button for basic creation, "Enhance" button for prompt improvement, "Share" button to deploy results to the web, and input like "image: a dog playing in the park" to create results containing both text and generated images.</p> | |
| </div> | |
| </div> | |
| """.format(get_image_base64('mouse.gif'))) | |
| # ์ ๋ ฅ ์์ญ | |
| input = antd.InputTextarea( | |
| size="large", | |
| allow_clear=True, | |
| placeholder=get_random_placeholder(), | |
| elem_classes="custom-textarea" # style ๋์ class ์ฌ์ฉ | |
| ) | |
| # ๋ฒํผ ๊ทธ๋ฃน | |
| with antd.Flex(gap="small", justify="flex-start"): | |
| btn = antd.Button( | |
| "Generate", | |
| type="primary", | |
| size="large", | |
| elem_classes="generate-btn" | |
| ) | |
| boost_btn = antd.Button( | |
| "Enhance", | |
| type="default", | |
| size="large", | |
| elem_classes="enhance-btn" | |
| ) | |
| deploy_btn = antd.Button( | |
| "Share", | |
| type="default", | |
| size="large", | |
| elem_classes="share-btn" | |
| ) | |
| deploy_result = gr.HTML( | |
| label="Share Result", | |
| elem_classes="deploy-result" | |
| ) | |
| # ์ฐ์ธก ํจ๋ | |
| with antd.Col(span=24, md=16): | |
| with ms.Div(elem_classes="right_panel"): | |
| # macOS ์คํ์ผ ์๋์ฐ ํค๋ | |
| gr.HTML(""" | |
| <div class="window-frame"> | |
| <div class="window-header"> | |
| <div class="window-controls"> | |
| <div class="control close"></div> | |
| <div class="control minimize"></div> | |
| <div class="control maximize"></div> | |
| </div> | |
| <div class="window-title">Preview</div> | |
| </div> | |
| </div> | |
| """) | |
| # ํญ ์ปจํ ์ธ | |
| with antd.Tabs(active_key="empty", render_tab_bar="() => null") as state_tab: | |
| with antd.Tabs.Item(key="empty"): | |
| empty = antd.Empty( | |
| description="Enter your question to begin", | |
| elem_classes="right_content empty-content" # style ๋์ class ์ฌ์ฉ | |
| ) | |
| with antd.Tabs.Item(key="loading"): | |
| loading = antd.Spin( | |
| True, | |
| tip="Creating visual presentation...", | |
| size="large", | |
| elem_classes="right_content" | |
| ) | |
| with antd.Tabs.Item(key="render"): | |
| sandbox = gr.HTML(elem_classes="html_content") | |
| btn.click( | |
| demo_instance.generation_code, | |
| inputs=[input, setting], # setting์ด ์ด์ ์ ์๋จ | |
| outputs=[code_output, sandbox, state_tab, code_drawer] | |
| ).then( | |
| fn=update_placeholder, | |
| inputs=[], | |
| outputs=[input] | |
| ) | |
| boost_btn.click( | |
| fn=handle_boost, | |
| inputs=[input], | |
| outputs=[input, state_tab] | |
| ) | |
| deploy_btn.click( | |
| fn=lambda code: deploy_to_vercel(remove_code_block(code)) if code else "No code to share.", | |
| inputs=[code_output], | |
| outputs=[deploy_result] | |
| ) | |
| gr.HTML(""" | |
| <style> | |
| .generate-btn { | |
| background: #007aff !important; | |
| border-radius: 8px !important; | |
| box-shadow: 0 2px 4px rgba(0,0,0,0.1) !important; | |
| } | |
| .enhance-btn { | |
| border-radius: 8px !important; | |
| border: 1px solid #007aff !important; | |
| color: #007aff !important; | |
| } | |
| .share-btn { | |
| border-radius: 8px !important; | |
| border: 1px solid #28c840 !important; | |
| color: #28c840 !important; | |
| } | |
| /* hover ํจ๊ณผ */ | |
| .generate-btn:hover { | |
| background: #0056b3 !important; | |
| } | |
| .enhance-btn:hover { | |
| background: rgba(0,122,255,0.1) !important; | |
| } | |
| .share-btn:hover { | |
| background: rgba(40,200,64,0.1) !important; | |
| } | |
| .app-content { | |
| padding: 20px; | |
| text-align: center; | |
| } | |
| .app-title { | |
| font-size: 24px; | |
| color: #333; | |
| margin: 20px 0 10px; | |
| font-weight: 600; | |
| } | |
| .app-description { | |
| color: #666; | |
| font-size: 14px; | |
| margin-bottom: 30px; | |
| } | |
| .deploy-result { | |
| margin-top: 20px; | |
| padding: 15px; | |
| background: #f8f9fa; | |
| border-radius: 8px; | |
| font-family: -apple-system, BlinkMacSystemFont, sans-serif; | |
| } | |
| .deploy-result a { | |
| color: #007aff; | |
| text-decoration: none; | |
| font-weight: 500; | |
| } | |
| .deploy-result a:hover { | |
| text-decoration: underline; | |
| } | |
| /* ๋ฐ์ํ ๋์์ธ์ ์ํ ๋ฏธ๋์ด ์ฟผ๋ฆฌ */ | |
| @media (max-width: 768px) { | |
| .window-frame { | |
| border-radius: 0; | |
| } | |
| .left-panel, .right-panel { | |
| width: 100%; | |
| } | |
| .main-content { | |
| flex-direction: column; | |
| } | |
| } | |
| </style> | |
| """) | |
| return demo | |
| # ๋ฉ์ธ ์คํ ๋ถ๋ถ | |
| if __name__ == "__main__": | |
| try: | |
| demo_instance = Demo() # Demo ์ธ์คํด์ค ์์ฑ | |
| demo = create_main_interface() # ์ธํฐํ์ด์ค ์์ฑ | |
| demo.queue( | |
| default_concurrency_limit=20, # concurrency_count ๋์ default_concurrency_limit ์ฌ์ฉ | |
| status_update_rate=10, | |
| api_open=False | |
| ).launch( | |
| server_name="0.0.0.0", | |
| server_port=7860, | |
| share=False, | |
| debug=False | |
| ) | |
| except Exception as e: | |
| print(f"Initialization error: {e}") | |
| raise |