Spaces:
Runtime error
Runtime error
File size: 10,663 Bytes
4ebc565 a24f281 4ebc565 b982501 4ebc565 a24f281 e818c21 b785460 e818c21 0f1b614 b785460 092634c 0f1b614 4ebc565 0f1b614 a24f281 96fea2f 0f1b614 a24f281 0f1b614 a24f281 b982501 a24f281 0f1b614 a24f281 0f1b614 a24f281 0f1b614 56a3023 0f1b614 b982501 a24f281 4ebc565 0f1b614 56a3023 0f1b614 4ebc565 0f1b614 a24f281 0f1b614 a24f281 0f1b614 a24f281 0f1b614 a24f281 0f1b614 a24f281 0f1b614 a24f281 0f1b614 4ebc565 a24f281 4ebc565 b982501 4ebc565 b982501 a24f281 b982501 4ebc565 0f1b614 b982501 4ebc565 b982501 4ebc565 a24f281 b982501 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 |
import time
import gradio as gr
import torch
from einops import rearrange, repeat
from PIL import Image
import numpy as np
from flux.sampling import denoise, get_noise, get_schedule, prepare, rf_denoise, rf_inversion, unpack
from flux.util import (
SamplingOptions,
load_ae,
load_clip,
load_flow_model,
load_t5,
)
from pulid.pipeline_flux import PuLIDPipeline
from pulid.utils import resize_numpy_image_long, seed_everything
# ๊ฐ๋จํ ์ธ์ฉ ์ ๋ณด ์ถ๊ฐ
_CITE_ = """PuLID: Person-under-Language Image Diffusion Model"""
# GPU ์ฌ์ฉ ๊ฐ๋ฅ ์ฌ๋ถ ํ์ธ ๋ฐ ์ฅ์น ์ค์
def get_device():
if torch.cuda.is_available():
return torch.device('cuda')
else:
print("CUDA GPU๋ฅผ ์ฐพ์ ์ ์์ต๋๋ค. CPU๋ฅผ ์ฌ์ฉํฉ๋๋ค.")
return torch.device('cpu')
def get_models(name: str, device, offload: bool):
print(f"๋ชจ๋ธ์ {device}์ ๋ก๋ํฉ๋๋ค.")
t5 = load_t5(device, max_length=128)
clip_model = load_clip(device)
model = load_flow_model(name, device="cpu" if offload else device)
model.eval()
ae = load_ae(name, device="cpu" if offload else device)
return model, ae, t5, clip_model
class FluxGenerator:
def __init__(self):
# GPU ์ฌ์ฉ ๊ฐ๋ฅ ์ฌ๋ถ์ ๋ฐ๋ผ ์ฅ์น ์ค์
self.device = get_device()
self.offload = False
self.model_name = 'flux-dev'
# ๋ชจ๋ธ ๋ก๋ ์๋
try:
self.model, self.ae, self.t5, self.clip_model = get_models(
self.model_name,
device=self.device,
offload=self.offload,
)
self.pulid_model = PuLIDPipeline(
self.model,
'cuda' if torch.cuda.is_available() else 'cpu',
weight_dtype=torch.bfloat16 if self.device.type == 'cuda' else torch.float32
)
self.pulid_model.load_pretrain()
self.initialized = True
except Exception as e:
print(f"๋ชจ๋ธ ์ด๊ธฐํ ์ค ์ค๋ฅ ๋ฐ์: {e}")
self.initialized = False
# ๋ชจ๋ธ ์ด๊ธฐํ ์๋
try:
flux_generator = FluxGenerator()
model_initialized = flux_generator.initialized
except Exception as e:
print(f"FluxGenerator ์ด๊ธฐํ ์ค ์ค๋ฅ ๋ฐ์: {e}")
model_initialized = False
@torch.inference_mode()
def generate_image(
prompt: str,
id_image = None,
width: int = 512,
height: int = 512,
num_steps: int = 20,
start_step: int = 0,
guidance: float = 4.0,
seed: int = -1,
id_weight: float = 1.0,
neg_prompt: str = "",
true_cfg: float = 1.0,
timestep_to_start_cfg: int = 1,
max_sequence_length: int = 128,
gamma: float = 0.5,
eta: float = 0.7,
s: float = 0,
tau: float = 5,
):
# ๋ชจ๋ธ์ด ์ด๊ธฐํ๋์ง ์์์ผ๋ฉด ์ค๋ฅ ๋ฉ์์ง ๋ฐํ
if not model_initialized:
return None, "GPU ์ค๋ฅ: CUDA GPU๋ฅผ ์ฐพ์ ์ ์์ด ๋ชจ๋ธ์ ์ด๊ธฐํํ ์ ์์ต๋๋ค.", None
# ID ์ด๋ฏธ์ง๊ฐ ์์ผ๋ฉด ์คํ ๋ถ๊ฐ
if id_image is None:
return None, "์ค๋ฅ: ID ์ด๋ฏธ์ง๊ฐ ํ์ํฉ๋๋ค.", None
try:
flux_generator.t5.max_length = max_sequence_length
# ์๋ ์ค์
seed = int(seed)
if seed == -1:
seed = None
opts = SamplingOptions(
prompt=prompt,
width=width,
height=height,
num_steps=num_steps,
guidance=guidance,
seed=seed,
)
if opts.seed is None:
opts.seed = torch.Generator(device="cpu").seed()
seed_everything(opts.seed)
print(f"Generating prompt: '{opts.prompt}' (seed={opts.seed})...")
t0 = time.perf_counter()
use_true_cfg = abs(true_cfg - 1.0) > 1e-6
# 1) ์
๋ ฅ ๋
ธ์ด์ฆ ์ค๋น
noise = get_noise(
num_samples=1,
height=opts.height,
width=opts.width,
device=flux_generator.device,
dtype=torch.bfloat16 if flux_generator.device.type == 'cuda' else torch.float32,
seed=opts.seed,
)
bs, c, h, w = noise.shape
noise = rearrange(noise, "b c (h ph) (w pw) -> b (h w) (c ph pw)", ph=2, pw=2)
if noise.shape[0] == 1 and bs > 1:
noise = repeat(noise, "1 ... -> bs ...", bs=bs)
# ID ์ด๋ฏธ์ง ์ธ์ฝ๋ฉ
encode_t0 = time.perf_counter()
id_image = id_image.resize((opts.width, opts.height), resample=Image.LANCZOS)
x = torch.from_numpy(np.array(id_image).astype(np.float32))
x = (x / 127.5) - 1.0
x = rearrange(x, "h w c -> 1 c h w")
x = x.to(flux_generator.device)
dtype = torch.bfloat16 if flux_generator.device.type == 'cuda' else torch.float32
with torch.autocast(device_type=flux_generator.device.type, dtype=dtype):
x = flux_generator.ae.encode(x)
x = x.to(dtype)
encode_t1 = time.perf_counter()
print(f"Encoded in {encode_t1 - encode_t0:.2f} seconds.")
timesteps = get_schedule(opts.num_steps, x.shape[-1] * x.shape[-2] // 4, shift=False)
# 2) ํ
์คํธ ์๋ฒ ๋ฉ ์ค๋น
inp = prepare(t5=flux_generator.t5, clip=flux_generator.clip_model, img=x, prompt=opts.prompt)
inp_inversion = prepare(t5=flux_generator.t5, clip=flux_generator.clip_model, img=x, prompt="")
inp_neg = None
if use_true_cfg:
inp_neg = prepare(t5=flux_generator.t5, clip=flux_generator.clip_model, img=x, prompt=neg_prompt)
# 3) ID ์๋ฒ ๋ฉ ์์ฑ
id_embeddings = None
uncond_id_embeddings = None
if id_image is not None:
id_image = np.array(id_image)
id_image = resize_numpy_image_long(id_image, 1024)
id_embeddings, uncond_id_embeddings = flux_generator.pulid_model.get_id_embedding(id_image, cal_uncond=use_true_cfg)
y_0 = inp["img"].clone().detach()
# ์ด๋ฏธ์ง ์ฒ๋ฆฌ ๊ณผ์
inverted = rf_inversion(
flux_generator.model,
**inp_inversion,
timesteps=timesteps,
guidance=opts.guidance,
id=id_embeddings,
id_weight=id_weight,
start_step=start_step,
uncond_id=uncond_id_embeddings,
true_cfg=true_cfg,
timestep_to_start_cfg=timestep_to_start_cfg,
neg_txt=inp_neg["txt"] if use_true_cfg else None,
neg_txt_ids=inp_neg["txt_ids"] if use_true_cfg else None,
neg_vec=inp_neg["vec"] if use_true_cfg else None,
aggressive_offload=False,
y_1=noise,
gamma=gamma
)
inp["img"] = inverted
inp_inversion["img"] = inverted
edited = rf_denoise(
flux_generator.model,
**inp,
timesteps=timesteps,
guidance=opts.guidance,
id=id_embeddings,
id_weight=id_weight,
start_step=start_step,
uncond_id=uncond_id_embeddings,
true_cfg=true_cfg,
timestep_to_start_cfg=timestep_to_start_cfg,
neg_txt=inp_neg["txt"] if use_true_cfg else None,
neg_txt_ids=inp_neg["txt_ids"] if use_true_cfg else None,
neg_vec=inp_neg["vec"] if use_true_cfg else None,
aggressive_offload=False,
y_0=y_0,
eta=eta,
s=s,
tau=tau,
)
# ๊ฒฐ๊ณผ ์ด๋ฏธ์ง ๋์ฝ๋ฉ
edited = unpack(edited.float(), opts.height, opts.width)
with torch.autocast(device_type=flux_generator.device.type, dtype=dtype):
edited = flux_generator.ae.decode(edited)
t1 = time.perf_counter()
print(f"Done in {t1 - t0:.2f} seconds.")
# PIL ์ด๋ฏธ์ง๋ก ๋ณํ
edited = edited.clamp(-1, 1)
edited = rearrange(edited[0], "c h w -> h w c")
edited = Image.fromarray((127.5 * (edited + 1.0)).cpu().byte().numpy())
return edited, str(opts.seed), flux_generator.pulid_model.debug_img_list
except Exception as e:
import traceback
error_msg = f"์ด๋ฏธ์ง ์์ฑ ์ค ์ค๋ฅ ๋ฐ์: {str(e)}\n{traceback.format_exc()}"
print(error_msg)
return None, error_msg, None
def create_demo():
with gr.Blocks() as demo:
gr.Markdown("# PuLID: ์ธ๋ฌผ ์ด๋ฏธ์ง ๋ณํ ๋๊ตฌ")
if not model_initialized:
gr.Markdown("## โ ๏ธ ์ค๋ฅ: CUDA GPU๋ฅผ ์ฐพ์ ์ ์์ต๋๋ค")
gr.Markdown("์ด ์์ฉ ํ๋ก๊ทธ๋จ์ CUDA ์ง์ GPU๊ฐ ํ์ํฉ๋๋ค. CPU์์๋ ์คํํ ์ ์์ต๋๋ค.")
return demo
with gr.Row():
with gr.Column():
prompt = gr.Textbox(label="ํ๋กฌํํธ", value="portrait, color, cinematic")
id_image = gr.Image(label="ID ์ด๋ฏธ์ง", type="pil")
id_weight = gr.Slider(0.0, 1.0, 0.4, step=0.05, label="ID ๊ฐ์ค์น")
num_steps = gr.Slider(1, 24, 16, step=1, label="๋จ๊ณ ์")
guidance = gr.Slider(1.0, 10.0, 3.5, step=0.1, label="๊ฐ์ด๋์ค")
with gr.Accordion("๊ณ ๊ธ ์ต์
", open=False):
neg_prompt = gr.Textbox(label="๋ค๊ฑฐํฐ๋ธ ํ๋กฌํํธ", value="")
true_cfg = gr.Slider(1.0, 10.0, 3.5, step=0.1, label="CFG ์ค์ผ์ผ")
seed = gr.Textbox(-1, label="์๋ (-1: ๋๋ค)")
gr.Markdown("### ๊ธฐํ ์ต์
")
gamma = gr.Slider(0.0, 1.0, 0.5, step=0.1, label="๊ฐ๋ง")
eta = gr.Slider(0.0, 1.0, 0.8, step=0.1, label="์ํ")
generate_btn = gr.Button("์ด๋ฏธ์ง ์์ฑ")
with gr.Column():
output_image = gr.Image(label="์์ฑ๋ ์ด๋ฏธ์ง")
seed_output = gr.Textbox(label="๊ฒฐ๊ณผ/์ค๋ฅ ๋ฉ์์ง")
gr.Markdown(_CITE_)
generate_btn.click(
fn=generate_image,
inputs=[prompt, id_image, 512, 512, num_steps, 0, guidance, seed, id_weight, neg_prompt,
true_cfg, 1, 128, gamma, eta, 0, 5],
outputs=[output_image, seed_output],
)
return demo
if __name__ == "__main__":
import argparse
parser = argparse.ArgumentParser(description="PuLID for FLUX.1-dev")
parser.add_argument('--version', type=str, default='v0.9.1')
parser.add_argument("--name", type=str, default="flux-dev")
parser.add_argument("--port", type=int, default=8080)
args = parser.parse_args()
demo = create_demo()
demo.launch(ssr_mode=False) |