File size: 10,663 Bytes
4ebc565
 
 
 
 
a24f281
4ebc565
 
 
 
 
 
 
 
 
 
 
 
b982501
 
4ebc565
a24f281
 
 
 
 
 
 
 
 
 
e818c21
b785460
e818c21
 
0f1b614
b785460
092634c
0f1b614
4ebc565
0f1b614
a24f281
 
96fea2f
0f1b614
a24f281
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0f1b614
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a24f281
 
 
b982501
a24f281
 
 
0f1b614
a24f281
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0f1b614
 
 
 
 
 
 
 
 
a24f281
0f1b614
 
 
 
56a3023
0f1b614
 
 
b982501
a24f281
 
4ebc565
0f1b614
 
 
 
 
 
 
 
 
 
 
 
 
 
56a3023
0f1b614
 
 
 
4ebc565
0f1b614
a24f281
0f1b614
a24f281
0f1b614
 
a24f281
 
0f1b614
a24f281
0f1b614
 
 
 
a24f281
0f1b614
a24f281
 
 
 
 
0f1b614
4ebc565
a24f281
 
 
 
 
 
 
 
 
4ebc565
 
b982501
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4ebc565
 
b982501
a24f281
b982501
 
4ebc565
0f1b614
b982501
 
 
4ebc565
 
 
 
 
 
 
 
 
b982501
 
 
4ebc565
 
a24f281
b982501
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
import time
import gradio as gr
import torch
from einops import rearrange, repeat
from PIL import Image
import numpy as np

from flux.sampling import denoise, get_noise, get_schedule, prepare, rf_denoise, rf_inversion, unpack
from flux.util import (
    SamplingOptions,
    load_ae,
    load_clip,
    load_flow_model,
    load_t5,
)
from pulid.pipeline_flux import PuLIDPipeline
from pulid.utils import resize_numpy_image_long, seed_everything

# ๊ฐ„๋‹จํ•œ ์ธ์šฉ ์ •๋ณด ์ถ”๊ฐ€
_CITE_ = """PuLID: Person-under-Language Image Diffusion Model"""

# GPU ์‚ฌ์šฉ ๊ฐ€๋Šฅ ์—ฌ๋ถ€ ํ™•์ธ ๋ฐ ์žฅ์น˜ ์„ค์ •
def get_device():
    if torch.cuda.is_available():
        return torch.device('cuda')
    else:
        print("CUDA GPU๋ฅผ ์ฐพ์„ ์ˆ˜ ์—†์Šต๋‹ˆ๋‹ค. CPU๋ฅผ ์‚ฌ์šฉํ•ฉ๋‹ˆ๋‹ค.")
        return torch.device('cpu')

def get_models(name: str, device, offload: bool):
    print(f"๋ชจ๋ธ์„ {device}์— ๋กœ๋“œํ•ฉ๋‹ˆ๋‹ค.")
    t5 = load_t5(device, max_length=128)
    clip_model = load_clip(device)
    model = load_flow_model(name, device="cpu" if offload else device)
    model.eval()
    ae = load_ae(name, device="cpu" if offload else device)
    return model, ae, t5, clip_model


class FluxGenerator:
    def __init__(self):
        # GPU ์‚ฌ์šฉ ๊ฐ€๋Šฅ ์—ฌ๋ถ€์— ๋”ฐ๋ผ ์žฅ์น˜ ์„ค์ •
        self.device = get_device()
        self.offload = False
        self.model_name = 'flux-dev'
        
        # ๋ชจ๋ธ ๋กœ๋“œ ์‹œ๋„
        try:
            self.model, self.ae, self.t5, self.clip_model = get_models(
                self.model_name,
                device=self.device,
                offload=self.offload,
            )
            self.pulid_model = PuLIDPipeline(
                self.model, 
                'cuda' if torch.cuda.is_available() else 'cpu', 
                weight_dtype=torch.bfloat16 if self.device.type == 'cuda' else torch.float32
            )
            self.pulid_model.load_pretrain()
            self.initialized = True
        except Exception as e:
            print(f"๋ชจ๋ธ ์ดˆ๊ธฐํ™” ์ค‘ ์˜ค๋ฅ˜ ๋ฐœ์ƒ: {e}")
            self.initialized = False

# ๋ชจ๋ธ ์ดˆ๊ธฐํ™” ์‹œ๋„
try:
    flux_generator = FluxGenerator()
    model_initialized = flux_generator.initialized
except Exception as e:
    print(f"FluxGenerator ์ดˆ๊ธฐํ™” ์ค‘ ์˜ค๋ฅ˜ ๋ฐœ์ƒ: {e}")
    model_initialized = False


@torch.inference_mode()
def generate_image(
    prompt: str,
    id_image = None,
    width: int = 512,
    height: int = 512,
    num_steps: int = 20,
    start_step: int = 0,
    guidance: float = 4.0,
    seed: int = -1,
    id_weight: float = 1.0,
    neg_prompt: str = "",
    true_cfg: float = 1.0,
    timestep_to_start_cfg: int = 1,
    max_sequence_length: int = 128,
    gamma: float = 0.5,
    eta: float = 0.7,
    s: float = 0,
    tau: float = 5,
):
    # ๋ชจ๋ธ์ด ์ดˆ๊ธฐํ™”๋˜์ง€ ์•Š์•˜์œผ๋ฉด ์˜ค๋ฅ˜ ๋ฉ”์‹œ์ง€ ๋ฐ˜ํ™˜
    if not model_initialized:
        return None, "GPU ์˜ค๋ฅ˜: CUDA GPU๋ฅผ ์ฐพ์„ ์ˆ˜ ์—†์–ด ๋ชจ๋ธ์„ ์ดˆ๊ธฐํ™”ํ•  ์ˆ˜ ์—†์Šต๋‹ˆ๋‹ค.", None
    
    # ID ์ด๋ฏธ์ง€๊ฐ€ ์—†์œผ๋ฉด ์‹คํ–‰ ๋ถˆ๊ฐ€
    if id_image is None:
        return None, "์˜ค๋ฅ˜: ID ์ด๋ฏธ์ง€๊ฐ€ ํ•„์š”ํ•ฉ๋‹ˆ๋‹ค.", None
    
    try:
        flux_generator.t5.max_length = max_sequence_length

        # ์‹œ๋“œ ์„ค์ •
        seed = int(seed)
        if seed == -1:
            seed = None

        opts = SamplingOptions(
            prompt=prompt,
            width=width,
            height=height,
            num_steps=num_steps,
            guidance=guidance,
            seed=seed,
        )

        if opts.seed is None:
            opts.seed = torch.Generator(device="cpu").seed()

        seed_everything(opts.seed)
        print(f"Generating prompt: '{opts.prompt}' (seed={opts.seed})...")
        t0 = time.perf_counter()

        use_true_cfg = abs(true_cfg - 1.0) > 1e-6

        # 1) ์ž…๋ ฅ ๋…ธ์ด์ฆˆ ์ค€๋น„
        noise = get_noise(
            num_samples=1,
            height=opts.height,
            width=opts.width,
            device=flux_generator.device,
            dtype=torch.bfloat16 if flux_generator.device.type == 'cuda' else torch.float32,
            seed=opts.seed,
        )
        bs, c, h, w = noise.shape
        noise = rearrange(noise, "b c (h ph) (w pw) -> b (h w) (c ph pw)", ph=2, pw=2)
        if noise.shape[0] == 1 and bs > 1:
            noise = repeat(noise, "1 ... -> bs ...", bs=bs)

        # ID ์ด๋ฏธ์ง€ ์ธ์ฝ”๋”ฉ
        encode_t0 = time.perf_counter()
        id_image = id_image.resize((opts.width, opts.height), resample=Image.LANCZOS)
        x = torch.from_numpy(np.array(id_image).astype(np.float32))
        x = (x / 127.5) - 1.0
        x = rearrange(x, "h w c -> 1 c h w")
        x = x.to(flux_generator.device)
        
        dtype = torch.bfloat16 if flux_generator.device.type == 'cuda' else torch.float32
        with torch.autocast(device_type=flux_generator.device.type, dtype=dtype):
            x = flux_generator.ae.encode(x)
        x = x.to(dtype)

        encode_t1 = time.perf_counter()
        print(f"Encoded in {encode_t1 - encode_t0:.2f} seconds.")
        
        timesteps = get_schedule(opts.num_steps, x.shape[-1] * x.shape[-2] // 4, shift=False)

        # 2) ํ…์ŠคํŠธ ์ž„๋ฒ ๋”ฉ ์ค€๋น„
        inp = prepare(t5=flux_generator.t5, clip=flux_generator.clip_model, img=x, prompt=opts.prompt)
        inp_inversion = prepare(t5=flux_generator.t5, clip=flux_generator.clip_model, img=x, prompt="")
        inp_neg = None
        if use_true_cfg:
            inp_neg = prepare(t5=flux_generator.t5, clip=flux_generator.clip_model, img=x, prompt=neg_prompt)

        # 3) ID ์ž„๋ฒ ๋”ฉ ์ƒ์„ฑ
        id_embeddings = None
        uncond_id_embeddings = None
        if id_image is not None:
            id_image = np.array(id_image)
            id_image = resize_numpy_image_long(id_image, 1024)
            id_embeddings, uncond_id_embeddings = flux_generator.pulid_model.get_id_embedding(id_image, cal_uncond=use_true_cfg)

        y_0 = inp["img"].clone().detach()

        # ์ด๋ฏธ์ง€ ์ฒ˜๋ฆฌ ๊ณผ์ •
        inverted = rf_inversion(
            flux_generator.model,
            **inp_inversion,
            timesteps=timesteps,
            guidance=opts.guidance,
            id=id_embeddings,
            id_weight=id_weight,
            start_step=start_step,
            uncond_id=uncond_id_embeddings,
            true_cfg=true_cfg,
            timestep_to_start_cfg=timestep_to_start_cfg,
            neg_txt=inp_neg["txt"] if use_true_cfg else None,
            neg_txt_ids=inp_neg["txt_ids"] if use_true_cfg else None,
            neg_vec=inp_neg["vec"] if use_true_cfg else None,
            aggressive_offload=False,
            y_1=noise,
            gamma=gamma
        )
        
        inp["img"] = inverted
        inp_inversion["img"] = inverted

        edited = rf_denoise(
            flux_generator.model,
            **inp,
            timesteps=timesteps,
            guidance=opts.guidance,
            id=id_embeddings,
            id_weight=id_weight,
            start_step=start_step,
            uncond_id=uncond_id_embeddings,
            true_cfg=true_cfg,
            timestep_to_start_cfg=timestep_to_start_cfg,
            neg_txt=inp_neg["txt"] if use_true_cfg else None,
            neg_txt_ids=inp_neg["txt_ids"] if use_true_cfg else None,
            neg_vec=inp_neg["vec"] if use_true_cfg else None,
            aggressive_offload=False,
            y_0=y_0,
            eta=eta,
            s=s,
            tau=tau,
        )

        # ๊ฒฐ๊ณผ ์ด๋ฏธ์ง€ ๋””์ฝ”๋”ฉ
        edited = unpack(edited.float(), opts.height, opts.width)
        with torch.autocast(device_type=flux_generator.device.type, dtype=dtype):
            edited = flux_generator.ae.decode(edited)

        t1 = time.perf_counter()
        print(f"Done in {t1 - t0:.2f} seconds.")

        # PIL ์ด๋ฏธ์ง€๋กœ ๋ณ€ํ™˜
        edited = edited.clamp(-1, 1)
        edited = rearrange(edited[0], "c h w -> h w c")
        edited = Image.fromarray((127.5 * (edited + 1.0)).cpu().byte().numpy())

        return edited, str(opts.seed), flux_generator.pulid_model.debug_img_list
    
    except Exception as e:
        import traceback
        error_msg = f"์ด๋ฏธ์ง€ ์ƒ์„ฑ ์ค‘ ์˜ค๋ฅ˜ ๋ฐœ์ƒ: {str(e)}\n{traceback.format_exc()}"
        print(error_msg)
        return None, error_msg, None


def create_demo():
    with gr.Blocks() as demo:
        gr.Markdown("# PuLID: ์ธ๋ฌผ ์ด๋ฏธ์ง€ ๋ณ€ํ™˜ ๋„๊ตฌ")
        
        if not model_initialized:
            gr.Markdown("## โš ๏ธ ์˜ค๋ฅ˜: CUDA GPU๋ฅผ ์ฐพ์„ ์ˆ˜ ์—†์Šต๋‹ˆ๋‹ค")
            gr.Markdown("์ด ์‘์šฉ ํ”„๋กœ๊ทธ๋žจ์€ CUDA ์ง€์› GPU๊ฐ€ ํ•„์š”ํ•ฉ๋‹ˆ๋‹ค. CPU์—์„œ๋Š” ์‹คํ–‰ํ•  ์ˆ˜ ์—†์Šต๋‹ˆ๋‹ค.")
            return demo
            
        with gr.Row():
            with gr.Column():
                prompt = gr.Textbox(label="ํ”„๋กฌํ”„ํŠธ", value="portrait, color, cinematic")
                id_image = gr.Image(label="ID ์ด๋ฏธ์ง€", type="pil")
                id_weight = gr.Slider(0.0, 1.0, 0.4, step=0.05, label="ID ๊ฐ€์ค‘์น˜")
                num_steps = gr.Slider(1, 24, 16, step=1, label="๋‹จ๊ณ„ ์ˆ˜")
                guidance = gr.Slider(1.0, 10.0, 3.5, step=0.1, label="๊ฐ€์ด๋˜์Šค")

                with gr.Accordion("๊ณ ๊ธ‰ ์˜ต์…˜", open=False):
                    neg_prompt = gr.Textbox(label="๋„ค๊ฑฐํ‹ฐ๋ธŒ ํ”„๋กฌํ”„ํŠธ", value="")
                    true_cfg = gr.Slider(1.0, 10.0, 3.5, step=0.1, label="CFG ์Šค์ผ€์ผ")
                    seed = gr.Textbox(-1, label="์‹œ๋“œ (-1: ๋žœ๋ค)")
                    gr.Markdown("### ๊ธฐํƒ€ ์˜ต์…˜")
                    gamma = gr.Slider(0.0, 1.0, 0.5, step=0.1, label="๊ฐ๋งˆ")
                    eta = gr.Slider(0.0, 1.0, 0.8, step=0.1, label="์—ํƒ€")

                generate_btn = gr.Button("์ด๋ฏธ์ง€ ์ƒ์„ฑ")

            with gr.Column():
                output_image = gr.Image(label="์ƒ์„ฑ๋œ ์ด๋ฏธ์ง€")
                seed_output = gr.Textbox(label="๊ฒฐ๊ณผ/์˜ค๋ฅ˜ ๋ฉ”์‹œ์ง€")
                gr.Markdown(_CITE_)

        generate_btn.click(
            fn=generate_image,
            inputs=[prompt, id_image, 512, 512, num_steps, 0, guidance, seed, id_weight, neg_prompt,
                    true_cfg, 1, 128, gamma, eta, 0, 5],
            outputs=[output_image, seed_output],
        )

    return demo


if __name__ == "__main__":
    import argparse

    parser = argparse.ArgumentParser(description="PuLID for FLUX.1-dev")
    parser.add_argument('--version', type=str, default='v0.9.1')
    parser.add_argument("--name", type=str, default="flux-dev")
    parser.add_argument("--port", type=int, default=8080)
    args = parser.parse_args()

    demo = create_demo()
    demo.launch(ssr_mode=False)