File size: 10,818 Bytes
90edd2d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6155bae
90edd2d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
import gradio as gr
import openai
from openai import OpenAI
import numpy as np
import threading
import queue
import time
import json
import websocket
import base64
import pyaudio
import wave
import io
from typing import Generator, Tuple
import asyncio
import edge_tts

# OpenAI API ํ‚ค ์„ค์ •
OPENAI_API_KEY = os.getenv("OPENAI_API_KEY")
client = OpenAI(api_key=OPENAI_API_KEY)

class RealtimeTranslator:
    def __init__(self):
        self.is_recording = False
        self.audio_queue = queue.Queue()
        self.text_queue = queue.Queue()
        self.translation_queue = queue.Queue()
        self.current_text = ""
        self.detected_language = None
        
    def detect_language(self, text: str) -> str:
        """ํ…์ŠคํŠธ์˜ ์–ธ์–ด๋ฅผ ๊ฐ์ง€ํ•ฉ๋‹ˆ๋‹ค."""
        korean_chars = sum(1 for char in text if ord('๊ฐ€') <= ord(char) <= ord('ํžฃ'))
        total_chars = len(text.replace(" ", ""))
        
        if total_chars > 0:
            korean_ratio = korean_chars / total_chars
            if korean_ratio > 0.3:
                return "ko"
        return "en"
    
    def process_audio_chunk(self, audio_chunk):
        """์˜ค๋””์˜ค ์ฒญํฌ๋ฅผ ์ฒ˜๋ฆฌํ•˜์—ฌ ํ…์ŠคํŠธ๋กœ ๋ณ€ํ™˜"""
        try:
            # ์˜ค๋””์˜ค ์ฒญํฌ๋ฅผ ์ž„์‹œ ํŒŒ์ผ๋กœ ์ €์žฅ
            import tempfile
            with tempfile.NamedTemporaryFile(suffix=".wav", delete=False) as tmp_file:
                # WAV ํŒŒ์ผ๋กœ ์ €์žฅ
                import wave
                with wave.open(tmp_file.name, 'wb') as wav_file:
                    wav_file.setnchannels(1)
                    wav_file.setsampwidth(2)
                    wav_file.setframerate(16000)
                    wav_file.writeframes(audio_chunk)
                
                # Whisper API ํ˜ธ์ถœ
                with open(tmp_file.name, "rb") as audio_file:
                    transcript = client.audio.transcriptions.create(
                        model="whisper-1",
                        file=audio_file,
                        language=None,
                        prompt="์‹ค์‹œ๊ฐ„ ๋Œ€ํ™”๋ฅผ ๋ฒˆ์—ญํ•ฉ๋‹ˆ๋‹ค."
                    )
                
                return transcript.text
                
        except Exception as e:
            print(f"์Œ์„ฑ ์ธ์‹ ์˜ค๋ฅ˜: {e}")
            return ""
    
    def translate_stream(self, text: str, source_lang: str) -> str:
        """ํ…์ŠคํŠธ๋ฅผ ์‹ค์‹œ๊ฐ„์œผ๋กœ ๋ฒˆ์—ญ"""
        try:
            if not text or text.strip() == "":
                return ""
            
            # ๋ฒˆ์—ญ ํ”„๋กฌํ”„ํŠธ
            if source_lang == "ko":
                messages = [
                    {"role": "system", "content": "์‹ค์‹œ๊ฐ„ ํ†ต์—ญ์‚ฌ์ž…๋‹ˆ๋‹ค. ํ•œ๊ตญ์–ด๋ฅผ ์˜์–ด๋กœ ์ฆ‰์‹œ ๋ฒˆ์—ญํ•ฉ๋‹ˆ๋‹ค."},
                    {"role": "user", "content": text}
                ]
            else:
                messages = [
                    {"role": "system", "content": "์‹ค์‹œ๊ฐ„ ํ†ต์—ญ์‚ฌ์ž…๋‹ˆ๋‹ค. ์˜์–ด๋ฅผ ํ•œ๊ตญ์–ด๋กœ ์ฆ‰์‹œ ๋ฒˆ์—ญํ•ฉ๋‹ˆ๋‹ค."},
                    {"role": "user", "content": text}
                ]
            
            # ์ŠคํŠธ๋ฆฌ๋ฐ ์‘๋‹ต
            stream = client.chat.completions.create(
                model="gpt-4o-mini",
                messages=messages,
                stream=True,
                temperature=0.3,
                max_tokens=150
            )
            
            translated = ""
            for chunk in stream:
                if chunk.choices[0].delta.content:
                    translated += chunk.choices[0].delta.content
            
            return translated
            
        except Exception as e:
            print(f"๋ฒˆ์—ญ ์˜ค๋ฅ˜: {e}")
            return ""

translator = RealtimeTranslator()

def process_stream(audio_stream):
    """์˜ค๋””์˜ค ์ŠคํŠธ๋ฆผ์„ ์‹ค์‹œ๊ฐ„์œผ๋กœ ์ฒ˜๋ฆฌ"""
    if audio_stream is None:
        yield "๐Ÿ”ด ๋งˆ์ดํฌ๋ฅผ ์ผœ๊ณ  ๋ง์”€ํ•ด์ฃผ์„ธ์š”", "", ""
        return
    
    sample_rate, audio_data = audio_stream
    
    # ์˜ค๋””์˜ค ๋ฐ์ดํ„ฐ๊ฐ€ ๋„ˆ๋ฌด ์งง์œผ๋ฉด ๋ฌด์‹œ
    if len(audio_data) < sample_rate * 0.5:  # 0.5์ดˆ ๋ฏธ๋งŒ
        yield "๐ŸŽค ๋“ฃ๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค...", "", ""
        return
    
    # ์˜ค๋””์˜ค ์ฒญํฌ ์ฒ˜๋ฆฌ
    audio_bytes = audio_data.tobytes()
    
    # ์Œ์„ฑ์„ ํ…์ŠคํŠธ๋กœ ๋ณ€ํ™˜
    text = translator.process_audio_chunk(audio_bytes)
    
    if text:
        # ์–ธ์–ด ๊ฐ์ง€
        detected_lang = translator.detect_language(text)
        
        # ์‹ค์‹œ๊ฐ„ ๋ฒˆ์—ญ
        translated = translator.translate_stream(text, detected_lang)
        
        # ๊ฒฐ๊ณผ ๋ฐ˜ํ™˜
        if detected_lang == "ko":
            yield f"โœ… ํ•œ๊ตญ์–ด ๊ฐ์ง€", text, translated
        else:
            yield f"โœ… English detected", translated, text

def create_realtime_interface():
    with gr.Blocks(title="์‹ค์‹œ๊ฐ„ ์Œ์„ฑ ๋ฒˆ์—ญ๊ธฐ", theme=gr.themes.Soft()) as demo:
        gr.Markdown(
            """
            # ๐ŸŽค ์‹ค์‹œ๊ฐ„ ์Œ์„ฑ ๋ฒˆ์—ญ๊ธฐ (Real-time Voice Translator)
            
            ### ๋งํ•˜๋Š” ๋™์•ˆ ์‹ค์‹œ๊ฐ„์œผ๋กœ ๋ฒˆ์—ญ๋ฉ๋‹ˆ๋‹ค!
            
            ๐Ÿ”ด **์‹œ์ž‘** ๋ฒ„ํŠผ์„ ๋ˆ„๋ฅด๊ณ  ๋งํ•˜๋ฉด, ์‹ค์‹œ๊ฐ„์œผ๋กœ ๋ฒˆ์—ญ์ด ํ‘œ์‹œ๋ฉ๋‹ˆ๋‹ค.
            
            ---
            """
        )
        
        with gr.Row():
            with gr.Column(scale=2):
                audio_input = gr.Audio(
                    source="microphone",
                    type="numpy",
                    streaming=True,  # ์ŠคํŠธ๋ฆฌ๋ฐ ๋ชจ๋“œ ํ™œ์„ฑํ™”
                    label="๐ŸŽค ์‹ค์‹œ๊ฐ„ ๋งˆ์ดํฌ ์ž…๋ ฅ",
                    elem_id="audio-stream"
                )
            
            with gr.Column(scale=1):
                status_text = gr.Textbox(
                    label="๐Ÿ“Š ์ƒํƒœ",
                    value="๐Ÿ”ด ๋งˆ์ดํฌ๋ฅผ ์ผœ๊ณ  ๋ง์”€ํ•ด์ฃผ์„ธ์š”",
                    interactive=False
                )
        
        with gr.Row():
            with gr.Column():
                korean_output = gr.Textbox(
                    label="๐Ÿ‡ฐ๐Ÿ‡ท ํ•œ๊ตญ์–ด",
                    placeholder="ํ•œ๊ตญ์–ด๊ฐ€ ์‹ค์‹œ๊ฐ„์œผ๋กœ ํ‘œ์‹œ๋ฉ๋‹ˆ๋‹ค",
                    lines=8,
                    interactive=False,
                    elem_id="korean-text"
                )
            
            with gr.Column():
                english_output = gr.Textbox(
                    label="๐Ÿ‡บ๐Ÿ‡ธ English",
                    placeholder="English translation appears here in real-time",
                    lines=8,
                    interactive=False,
                    elem_id="english-text"
                )
        
        # ์ŠคํŠธ๋ฆฌ๋ฐ ์ด๋ฒคํŠธ ์„ค์ •
        audio_input.stream(
            fn=process_stream,
            inputs=[audio_input],
            outputs=[status_text, korean_output, english_output],
            show_progress=False
        )
        
        gr.Markdown(
            """
            ---
            
            ### ๐Ÿ’ก ์‚ฌ์šฉ ํŒ:
            - ๋ช…ํ™•ํ•˜๊ฒŒ ๋งํ• ์ˆ˜๋ก ์ธ์‹๋ฅ ์ด ๋†’์•„์ง‘๋‹ˆ๋‹ค
            - ๋ฌธ์žฅ์ด ๋๋‚  ๋•Œ๊นŒ์ง€ ์ž ์‹œ ๋ฉˆ์ถ”๋ฉด ๋” ์ •ํ™•ํ•œ ๋ฒˆ์—ญ์ด ๋ฉ๋‹ˆ๋‹ค
            - ํ•œ๊ตญ์–ด์™€ ์˜์–ด๋ฅผ ์ž๋™์œผ๋กœ ๊ฐ์ง€ํ•ฉ๋‹ˆ๋‹ค
            
            ### โš™๏ธ ๊ธฐ์ˆ  ์‚ฌ์–‘:
            - **์Œ์„ฑ ์ธ์‹**: OpenAI Whisper (์‹ค์‹œ๊ฐ„ ์ŠคํŠธ๋ฆฌ๋ฐ)
            - **๋ฒˆ์—ญ**: GPT-4 (์ŠคํŠธ๋ฆฌ๋ฐ ๋ชจ๋“œ)
            - **์ง€์—ฐ ์‹œ๊ฐ„**: ~1-2์ดˆ
            """
        )
        
        # CSS ์Šคํƒ€์ผ ์ถ”๊ฐ€
        demo.css = """
        #audio-stream {
            height: 150px !important;
        }
        #korean-text, #english-text {
            font-size: 18px !important;
            line-height: 1.5 !important;
        }
        .gradio-container {
            max-width: 1200px !important;
        }
        """
    
    return demo

# ๋Œ€์•ˆ: WebSocket ๊ธฐ๋ฐ˜ ์‹ค์‹œ๊ฐ„ ๋ฒˆ์—ญ (๋” ๋‚ฎ์€ ์ง€์—ฐ์‹œ๊ฐ„)
class WebSocketTranslator:
    def __init__(self):
        self.ws_url = "wss://api.openai.com/v1/realtime"  # ์˜ˆ์‹œ URL
        self.ws = None
        self.is_connected = False
        
    def connect(self):
        """WebSocket ์—ฐ๊ฒฐ"""
        headers = {
            "Authorization": f"Bearer {OPENAI_API_KEY}",
            "OpenAI-Beta": "realtime=v1"
        }
        
        try:
            self.ws = websocket.WebSocketApp(
                self.ws_url,
                header=headers,
                on_open=self.on_open,
                on_message=self.on_message,
                on_error=self.on_error,
                on_close=self.on_close
            )
            
            # ๋ณ„๋„ ์Šค๋ ˆ๋“œ์—์„œ ์‹คํ–‰
            wst = threading.Thread(target=self.ws.run_forever)
            wst.daemon = True
            wst.start()
            
        except Exception as e:
            print(f"WebSocket ์—ฐ๊ฒฐ ์˜ค๋ฅ˜: {e}")
    
    def on_open(self, ws):
        self.is_connected = True
        print("WebSocket ์—ฐ๊ฒฐ๋จ")
        
    def on_message(self, ws, message):
        """๋ฉ”์‹œ์ง€ ์ˆ˜์‹  ์ฒ˜๋ฆฌ"""
        try:
            data = json.loads(message)
            if data.get("type") == "transcription":
                # ์‹ค์‹œ๊ฐ„ ํ…์ŠคํŠธ ์ฒ˜๋ฆฌ
                text = data.get("text", "")
                self.process_realtime_text(text)
        except Exception as e:
            print(f"๋ฉ”์‹œ์ง€ ์ฒ˜๋ฆฌ ์˜ค๋ฅ˜: {e}")
    
    def on_error(self, ws, error):
        print(f"WebSocket ์˜ค๋ฅ˜: {error}")
        
    def on_close(self, ws, close_status_code, close_msg):
        self.is_connected = False
        print("WebSocket ์—ฐ๊ฒฐ ์ข…๋ฃŒ")
    
    def send_audio(self, audio_data):
        """์˜ค๋””์˜ค ๋ฐ์ดํ„ฐ ์ „์†ก"""
        if self.is_connected and self.ws:
            # ์˜ค๋””์˜ค๋ฅผ base64๋กœ ์ธ์ฝ”๋”ฉ
            audio_base64 = base64.b64encode(audio_data).decode('utf-8')
            
            message = {
                "type": "audio",
                "audio": audio_base64
            }
            
            self.ws.send(json.dumps(message))
    
    def process_realtime_text(self, text):
        """์‹ค์‹œ๊ฐ„ ํ…์ŠคํŠธ ์ฒ˜๋ฆฌ ๋ฐ ๋ฒˆ์—ญ"""
        # ์–ธ์–ด ๊ฐ์ง€ ๋ฐ ๋ฒˆ์—ญ ๋กœ์ง
        pass

# ๋ฉ”์ธ ์‹คํ–‰
if __name__ == "__main__":
    import os
    
    # API ํ‚ค ํ™•์ธ
    if OPENAI_API_KEY == "your-api-key-here":
        api_key = os.getenv("OPENAI_API_KEY")
        if api_key:
            OPENAI_API_KEY = api_key
            client = OpenAI(api_key=OPENAI_API_KEY)
        else:
            print("โš ๏ธ  ๊ฒฝ๊ณ : OpenAI API ํ‚ค๋ฅผ ์„ค์ •ํ•ด์ฃผ์„ธ์š”!")
            print("ํ™˜๊ฒฝ ๋ณ€์ˆ˜ OPENAI_API_KEY๋ฅผ ์„ค์ •ํ•˜๊ฑฐ๋‚˜ ์ฝ”๋“œ์— ์ง์ ‘ ์ž…๋ ฅํ•˜์„ธ์š”.")
    
    # Gradio ์•ฑ ์‹คํ–‰
    demo = create_realtime_interface()
    demo.queue()  # ํ ํ™œ์„ฑํ™” (์ŠคํŠธ๋ฆฌ๋ฐ์— ํ•„์š”)
    demo.launch(
        share=False,
        server_name="0.0.0.0",
        server_port=7860,
        debug=True
    )