Spaces:
Running
on
Zero
Running
on
Zero
import torch | |
import torch.nn as nn | |
from .eva_clip_processors import EvaClipImageTrainProcessor | |
from .eva_vit import Eva2LargePlusEncoder | |
class EvaClipVisionTower(nn.Module): | |
def __init__(self, vision_tower, args, delay_load=False): | |
super().__init__() | |
self.is_loaded = False | |
self.vision_tower_path = vision_tower | |
self.config = VisionTowerConfig() | |
if not delay_load: | |
self.load_model() | |
else: | |
self.cfg_only = self.config | |
def load_model(self): | |
self.image_processor = EvaClipImageTrainProcessor(self.config.image_size) | |
self.vision_tower = Eva2LargePlusEncoder(self.vision_tower_path) | |
self.vision_tower.requires_grad_(False) | |
self.is_loaded = True | |
def forward(self, images): | |
if type(images) is list: | |
image_features = [] | |
for image in images: | |
image_feature = self.vision_tower( | |
image.to(device=self.device, dtype=self.dtype).unsqueeze(0) | |
).to(image.dtype) | |
image_features.append(image_feature) | |
else: | |
image_features = self.vision_tower(images.to(device=self.device, dtype=self.dtype)).to( | |
images.dtype | |
) | |
return image_features | |
def dtype(self): | |
return self.vision_tower.dtype | |
def device(self): | |
return self.vision_tower.device | |
def hidden_size(self): | |
return self.config.hidden_size | |
def num_patches(self): | |
return (self.config.image_size // self.config.patch_size) ** 2 | |
class VisionTowerConfig: | |
def __init__(self): | |
self.image_size = 336 | |
self.patch_size = 14 | |
self.hidden_size = 1024 | |