update temperature
Browse files
app.py
CHANGED
@@ -1,49 +1,61 @@
|
|
1 |
import os, base64, json, uuid, torch, gradio as gr
|
2 |
from pathlib import Path
|
3 |
-
from src.llm.chat import FunctionCallingChat
|
4 |
|
5 |
-
chatbot = FunctionCallingChat()
|
|
|
6 |
|
7 |
def image_to_base64(image_path: str):
|
8 |
with open(image_path, "rb") as f:
|
9 |
return base64.b64encode(f.read()).decode("utf-8")
|
10 |
|
11 |
def save_uploaded_image(pil_img) -> Path:
|
|
|
12 |
Path("static").mkdir(exist_ok=True)
|
13 |
filename = f"upload_{uuid.uuid4().hex[:8]}.png"
|
14 |
path = Path("static") / filename
|
15 |
pil_img.save(path)
|
16 |
return path
|
17 |
|
18 |
-
def inference(pil_img, prompt, task):
|
19 |
if pil_img is None:
|
20 |
return "β Please upload an image first."
|
21 |
|
22 |
-
img_path = save_uploaded_image(pil_img)
|
|
|
23 |
|
|
|
24 |
if task == "Detection":
|
25 |
user_msg = f"Please detect objects in the image '{img_path}'."
|
26 |
elif task == "Segmentation":
|
27 |
user_msg = f"Please segment objects in the image '{img_path}'."
|
28 |
-
else:
|
29 |
prompt = prompt.strip() or "Analyse this image."
|
30 |
user_msg = f"{prompt} (image: '{img_path}')"
|
31 |
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
41 |
def create_header():
|
42 |
with gr.Row():
|
43 |
with gr.Column(scale=1):
|
44 |
logo_base64 = image_to_base64("static/aivn_logo.png")
|
45 |
gr.HTML(
|
46 |
-
f"""<img src="data:image/png;base64,{logo_base64}"
|
47 |
alt="Logo"
|
48 |
style="height:120px;width:auto;margin-right:20px;margin-bottom:20px;">"""
|
49 |
)
|
@@ -63,7 +75,6 @@ def create_header():
|
|
63 |
"""
|
64 |
)
|
65 |
|
66 |
-
|
67 |
def create_footer():
|
68 |
footer_html = """
|
69 |
<style>
|
@@ -80,7 +91,6 @@ def create_footer():
|
|
80 |
"""
|
81 |
return gr.HTML(footer_html)
|
82 |
|
83 |
-
|
84 |
custom_css = """
|
85 |
.gradio-container {min-height:100vh;}
|
86 |
.content-wrap {padding-bottom:60px;}
|
@@ -90,6 +100,7 @@ custom_css = """
|
|
90 |
.full-width-btn:hover {background:linear-gradient(45deg,#FF5252,#3CB4AC)!important;}
|
91 |
"""
|
92 |
|
|
|
93 |
with gr.Blocks(css=custom_css) as demo:
|
94 |
create_header()
|
95 |
|
@@ -97,9 +108,13 @@ with gr.Blocks(css=custom_css) as demo:
|
|
97 |
with gr.Column(scale=3):
|
98 |
upload_image = gr.Image(label="Upload image", type="pil")
|
99 |
prompt_input = gr.Textbox(label="Optional prompt", placeholder="e.g. Detect cats only")
|
100 |
-
task_choice = gr.Radio(
|
101 |
-
|
102 |
-
|
|
|
|
|
|
|
|
|
103 |
submit_btn = gr.Button("Run π§", elem_classes="full-width-btn")
|
104 |
|
105 |
with gr.Column(scale=4):
|
@@ -107,7 +122,7 @@ with gr.Blocks(css=custom_css) as demo:
|
|
107 |
|
108 |
submit_btn.click(
|
109 |
inference,
|
110 |
-
inputs=[upload_image, prompt_input, task_choice],
|
111 |
outputs=output_text,
|
112 |
)
|
113 |
|
|
|
1 |
import os, base64, json, uuid, torch, gradio as gr
|
2 |
from pathlib import Path
|
3 |
+
from src.llm.chat import FunctionCallingChat
|
4 |
|
5 |
+
chatbot = FunctionCallingChat()
|
6 |
+
chatbot.temperature = 0.7
|
7 |
|
8 |
def image_to_base64(image_path: str):
|
9 |
with open(image_path, "rb") as f:
|
10 |
return base64.b64encode(f.read()).decode("utf-8")
|
11 |
|
12 |
def save_uploaded_image(pil_img) -> Path:
|
13 |
+
"""Save PIL image to ./static and return its path."""
|
14 |
Path("static").mkdir(exist_ok=True)
|
15 |
filename = f"upload_{uuid.uuid4().hex[:8]}.png"
|
16 |
path = Path("static") / filename
|
17 |
pil_img.save(path)
|
18 |
return path
|
19 |
|
20 |
+
def inference(pil_img, prompt, task, temperature):
|
21 |
if pil_img is None:
|
22 |
return "β Please upload an image first."
|
23 |
|
24 |
+
img_path = save_uploaded_image(pil_img)
|
25 |
+
chatbot.temperature = temperature
|
26 |
|
27 |
+
# build user message
|
28 |
if task == "Detection":
|
29 |
user_msg = f"Please detect objects in the image '{img_path}'."
|
30 |
elif task == "Segmentation":
|
31 |
user_msg = f"Please segment objects in the image '{img_path}'."
|
32 |
+
else:
|
33 |
prompt = prompt.strip() or "Analyse this image."
|
34 |
user_msg = f"{prompt} (image: '{img_path}')"
|
35 |
|
36 |
+
try:
|
37 |
+
out = chatbot(user_msg)
|
38 |
+
txt = (
|
39 |
+
"### π§ Raw tool-call\n"
|
40 |
+
f"{out['raw_tool_call']}\n\n"
|
41 |
+
"### π¦ Tool results\n"
|
42 |
+
f"{json.dumps(out['results'], indent=2)}"
|
43 |
+
)
|
44 |
+
return txt
|
45 |
+
finally:
|
46 |
+
# 4οΈβ£ always delete the temp image
|
47 |
+
try:
|
48 |
+
img_path.unlink(missing_ok=True)
|
49 |
+
except Exception:
|
50 |
+
pass # if deletion fails we just move on
|
51 |
+
|
52 |
+
# ββββββββββββββββββββββββββββ UI ββββββββββββββββββββββββββββ
|
53 |
def create_header():
|
54 |
with gr.Row():
|
55 |
with gr.Column(scale=1):
|
56 |
logo_base64 = image_to_base64("static/aivn_logo.png")
|
57 |
gr.HTML(
|
58 |
+
f"""<img src="data:image/png;base64,{logo_base64}"
|
59 |
alt="Logo"
|
60 |
style="height:120px;width:auto;margin-right:20px;margin-bottom:20px;">"""
|
61 |
)
|
|
|
75 |
"""
|
76 |
)
|
77 |
|
|
|
78 |
def create_footer():
|
79 |
footer_html = """
|
80 |
<style>
|
|
|
91 |
"""
|
92 |
return gr.HTML(footer_html)
|
93 |
|
|
|
94 |
custom_css = """
|
95 |
.gradio-container {min-height:100vh;}
|
96 |
.content-wrap {padding-bottom:60px;}
|
|
|
100 |
.full-width-btn:hover {background:linear-gradient(45deg,#FF5252,#3CB4AC)!important;}
|
101 |
"""
|
102 |
|
103 |
+
# ββββββββββββββββββββββββββββ Blocks βββββββββββββββββββββββββ
|
104 |
with gr.Blocks(css=custom_css) as demo:
|
105 |
create_header()
|
106 |
|
|
|
108 |
with gr.Column(scale=3):
|
109 |
upload_image = gr.Image(label="Upload image", type="pil")
|
110 |
prompt_input = gr.Textbox(label="Optional prompt", placeholder="e.g. Detect cats only")
|
111 |
+
task_choice = gr.Radio(["Auto", "Detection", "Segmentation"],
|
112 |
+
value="Auto", label="Task")
|
113 |
+
|
114 |
+
# NEW temperature slider
|
115 |
+
temp_slider = gr.Slider(minimum=0.1, maximum=1.5, step=0.1,
|
116 |
+
value=0.7, label="Temperature (sampling)")
|
117 |
+
|
118 |
submit_btn = gr.Button("Run π§", elem_classes="full-width-btn")
|
119 |
|
120 |
with gr.Column(scale=4):
|
|
|
122 |
|
123 |
submit_btn.click(
|
124 |
inference,
|
125 |
+
inputs=[upload_image, prompt_input, task_choice, temp_slider],
|
126 |
outputs=output_text,
|
127 |
)
|
128 |
|