update sampling
Browse files- app.py +3 -20
- src/chat.py +0 -0
- src/llm/chat.py +1 -1
app.py
CHANGED
|
@@ -1,49 +1,34 @@
|
|
| 1 |
-
# app.py
|
| 2 |
import os, base64, json, uuid, torch, gradio as gr
|
| 3 |
from pathlib import Path
|
|
|
|
| 4 |
|
| 5 |
-
|
| 6 |
-
from src.llm.chat import FunctionCallingChat # wrapper around Llama-3.2-1B
|
| 7 |
-
chatbot = FunctionCallingChat() # load once at start-up
|
| 8 |
|
| 9 |
-
# -------- helpers --------------------------------------------------------
|
| 10 |
def image_to_base64(image_path: str):
|
| 11 |
with open(image_path, "rb") as f:
|
| 12 |
return base64.b64encode(f.read()).decode("utf-8")
|
| 13 |
|
| 14 |
-
|
| 15 |
def save_uploaded_image(pil_img) -> Path:
|
| 16 |
-
"""Persist uploaded PIL image to ./static/ and return the file path."""
|
| 17 |
Path("static").mkdir(exist_ok=True)
|
| 18 |
filename = f"upload_{uuid.uuid4().hex[:8]}.png"
|
| 19 |
path = Path("static") / filename
|
| 20 |
pil_img.save(path)
|
| 21 |
return path
|
| 22 |
|
| 23 |
-
|
| 24 |
-
# -------- inference ------------------------------------------------------
|
| 25 |
def inference(pil_img, prompt, task):
|
| 26 |
-
"""
|
| 27 |
-
β’ pil_img : uploaded PIL image
|
| 28 |
-
β’ prompt : optional free-form request
|
| 29 |
-
β’ task : "Detection" | "Segmentation" | "Auto"
|
| 30 |
-
Returns plain-text JSON with the LLM tool-call and its results.
|
| 31 |
-
"""
|
| 32 |
if pil_img is None:
|
| 33 |
return "β Please upload an image first."
|
| 34 |
|
| 35 |
img_path = save_uploaded_image(pil_img)
|
| 36 |
|
| 37 |
-
# Build user message for the LLM
|
| 38 |
if task == "Detection":
|
| 39 |
user_msg = f"Please detect objects in the image '{img_path}'."
|
| 40 |
elif task == "Segmentation":
|
| 41 |
user_msg = f"Please segment objects in the image '{img_path}'."
|
| 42 |
-
else:
|
| 43 |
prompt = prompt.strip() or "Analyse this image."
|
| 44 |
user_msg = f"{prompt} (image: '{img_path}')"
|
| 45 |
|
| 46 |
-
# Run chat β tool calls β tool execution
|
| 47 |
out = chatbot(user_msg)
|
| 48 |
txt = (
|
| 49 |
"### π§ Raw tool-call \n"
|
|
@@ -53,8 +38,6 @@ def inference(pil_img, prompt, task):
|
|
| 53 |
)
|
| 54 |
return txt
|
| 55 |
|
| 56 |
-
|
| 57 |
-
# -------- UI (unchanged shell) ------------------------------------------
|
| 58 |
def create_header():
|
| 59 |
with gr.Row():
|
| 60 |
with gr.Column(scale=1):
|
|
|
|
|
|
|
| 1 |
import os, base64, json, uuid, torch, gradio as gr
|
| 2 |
from pathlib import Path
|
| 3 |
+
from src.llm.chat import FunctionCallingChat
|
| 4 |
|
| 5 |
+
chatbot = FunctionCallingChat()
|
|
|
|
|
|
|
| 6 |
|
|
|
|
| 7 |
def image_to_base64(image_path: str):
|
| 8 |
with open(image_path, "rb") as f:
|
| 9 |
return base64.b64encode(f.read()).decode("utf-8")
|
| 10 |
|
|
|
|
| 11 |
def save_uploaded_image(pil_img) -> Path:
|
|
|
|
| 12 |
Path("static").mkdir(exist_ok=True)
|
| 13 |
filename = f"upload_{uuid.uuid4().hex[:8]}.png"
|
| 14 |
path = Path("static") / filename
|
| 15 |
pil_img.save(path)
|
| 16 |
return path
|
| 17 |
|
|
|
|
|
|
|
| 18 |
def inference(pil_img, prompt, task):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 19 |
if pil_img is None:
|
| 20 |
return "β Please upload an image first."
|
| 21 |
|
| 22 |
img_path = save_uploaded_image(pil_img)
|
| 23 |
|
|
|
|
| 24 |
if task == "Detection":
|
| 25 |
user_msg = f"Please detect objects in the image '{img_path}'."
|
| 26 |
elif task == "Segmentation":
|
| 27 |
user_msg = f"Please segment objects in the image '{img_path}'."
|
| 28 |
+
else:
|
| 29 |
prompt = prompt.strip() or "Analyse this image."
|
| 30 |
user_msg = f"{prompt} (image: '{img_path}')"
|
| 31 |
|
|
|
|
| 32 |
out = chatbot(user_msg)
|
| 33 |
txt = (
|
| 34 |
"### π§ Raw tool-call \n"
|
|
|
|
| 38 |
)
|
| 39 |
return txt
|
| 40 |
|
|
|
|
|
|
|
| 41 |
def create_header():
|
| 42 |
with gr.Row():
|
| 43 |
with gr.Column(scale=1):
|
src/chat.py
DELETED
|
File without changes
|
src/llm/chat.py
CHANGED
|
@@ -31,7 +31,7 @@ class FunctionCallingChat:
|
|
| 31 |
]
|
| 32 |
|
| 33 |
generation_cfg = GenerationConfig(
|
| 34 |
-
max_new_tokens=512, temperature=0.
|
| 35 |
)
|
| 36 |
|
| 37 |
tokenized = self.tokenizer.apply_chat_template(
|
|
|
|
| 31 |
]
|
| 32 |
|
| 33 |
generation_cfg = GenerationConfig(
|
| 34 |
+
max_new_tokens=512, temperature=0.2, top_p=0.95, do_sample=True
|
| 35 |
)
|
| 36 |
|
| 37 |
tokenized = self.tokenizer.apply_chat_template(
|