File size: 11,745 Bytes
e5f5bde 9b5b26a c19d193 6aae614 49e99e0 eb3b209 0dd81f9 8fe992b 9b5b26a 68114ba e5f5bde 9b5b26a 5df72d6 9b5b26a 3d1237b 9b5b26a 8c01ffb 68114ba 8c01ffb 6aae614 ed3906a eb3b209 0dd81f9 68114ba ed3906a e5f5bde ae7a494 68114ba e5f5bde 68114ba e5f5bde 68114ba e5f5bde 68114ba e5f5bde 68114ba e5f5bde 68114ba e5f5bde 68114ba e5f5bde 8c01ffb e5f5bde 68114ba e5f5bde 68114ba e5f5bde 68114ba e5f5bde 68114ba e5f5bde 68114ba |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 |
from typing import Optional, Dict, Any
from dataclasses import dataclass
import os
from enum import Enum
import logging
from openai import OpenAI
from anthropic import Anthropic
import groq
import google.generativeai as palm
from smolagents import HfApiModel, CodeAgent, DuckDuckGoSearchTool, load_tool, tool
import datetime
import requests
import pytz
import yaml
from tools.final_answer import FinalAnswerTool
from tools.visit_webpage import VisitWebpageTool
from tools.web_search import DuckDuckGoSearchTool
from tools.linkedin_job_search import LinkedInJobSearchTool
from tools.odoo_documentation_search import OdooDocumentationSearchTool
from tools.odoo_code_agent_16 import OdooCodeAgent16
from tools.odoo_code_agent_17 import OdooCodeAgent17
from tools.odoo_code_agent_18 import OdooCodeAgent18
from Gradio_UI import GradioUI
# Configure logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
os.environ["TRANSFORMERS_OFFLINE"] = "1"
os.environ["TORCH_MPS_FORCE_CPU"] = "1"
# Below is an example of a tool that does nothing. Amaze us with your creativity !
@tool
def my_custom_tool(arg1:str, arg2:int)-> str: #it's import to specify the return type
#Keep this format for the description / args / args description but feel free to modify the tool
"""A tool that does nothing yet
Args:
arg1: the first argument
arg2: the second argument
"""
return "What magic will you build ?"
@tool
def get_current_time_in_timezone(timezone: str) -> str:
"""A tool that fetches the current local time in a specified timezone.
Args:
timezone: A string representing a valid timezone (e.g., 'America/New_York').
"""
try:
# Create timezone object
tz = pytz.timezone(timezone)
# Get current time in that timezone
local_time = datetime.datetime.now(tz).strftime("%Y-%m-%d %H:%M:%S")
return f"The current local time in {timezone} is: {local_time}"
except Exception as e:
return f"Error fetching time for timezone '{timezone}': {str(e)}"
with open("prompts.yaml", 'r') as stream:
prompt_templates = yaml.safe_load(stream)
final_answer = FinalAnswerTool()
visit_webpage = VisitWebpageTool()
web_search = DuckDuckGoSearchTool()
job_search_tool = LinkedInJobSearchTool()
odoo_documentation_search_tool = OdooDocumentationSearchTool()
odoo_code_agent_16_tool = OdooCodeAgent16(prompt_templates["system_prompt"])
odoo_code_agent_17_tool = OdooCodeAgent17(prompt_templates["system_prompt"])
odoo_code_agent_18_tool = OdooCodeAgent18(prompt_templates["system_prompt"])
# Import tool from Hub
image_generation_tool = load_tool("agents-course/text-to-image", trust_remote_code=True)
class ModelProvider(Enum):
QWEN = "Qwen"
HUGGINGFACE = "HuggingFace"
OPENAI = "OpenAI"
ANTHROPIC = "Anthropic"
GROQ = "Groq"
GOOGLE = "Google"
CUSTOM = "Custom"
@dataclass
class ProviderConfig:
model_id: str
api_key_env_var: Optional[str] = None
model_name_env_var: Optional[str] = None
base_url_env_var: Optional[str] = None
default_max_tokens: int = 1000
default_temperature: float = 0.5
class LLMProviderManager:
def __init__(self):
self.providers_config = {
ModelProvider.QWEN: ProviderConfig(
model_id="Qwen/Qwen2.5-Coder-32B-Instruct"
),
ModelProvider.HUGGINGFACE: ProviderConfig(
model_id="https://pflgm2locj2t89co.us-east-1.aws.endpoints.huggingface.cloud"
),
ModelProvider.OPENAI: ProviderConfig(
model_id="gpt-4",
api_key_env_var="OPENAI_API_KEY",
model_name_env_var="OPENAI_MODEL_NAME",
base_url_env_var="OPENAI_BASE_URL"
),
ModelProvider.ANTHROPIC: ProviderConfig(
model_id="claude-v1",
api_key_env_var="ANTHROPIC_API_KEY",
model_name_env_var="ANTHROPIC_MODEL_NAME",
base_url_env_var="ANTHROPIC_BASE_URL"
),
ModelProvider.GROQ: ProviderConfig(
model_id="mixtral-8x7b-32768",
api_key_env_var="GROQ_API_KEY",
model_name_env_var="GROQ_MODEL_NAME",
base_url_env_var="GROQ_BASE_URL"
),
ModelProvider.GOOGLE: ProviderConfig(
model_id="gemini-pro",
api_key_env_var="GOOGLE_API_KEY",
model_name_env_var="GOOGLE_MODEL_NAME",
base_url_env_var="GOOGLE_BASE_URL"
),
ModelProvider.CUSTOM: ProviderConfig(
model_id=None,
base_url_env_var="CUSTOM_BASE_URL"
)
}
def _get_api_key(self, provider: ModelProvider, custom_api_key: Optional[str] = None) -> Optional[str]:
config = self.providers_config[provider]
if custom_api_key:
return custom_api_key
return os.environ.get(config.api_key_env_var) if config.api_key_env_var else None
def _get_base_url(self, provider: ModelProvider) -> Optional[str]:
config = self.providers_config[provider]
return os.environ.get(config.base_url_env_var) if config.base_url_env_var else None
def _get_model_name(self, provider: ModelProvider) -> str:
config = self.providers_config[provider]
if config.model_name_env_var:
return os.environ.get(config.model_name_env_var, config.model_id)
return config.model_id
def initialize_provider(
self,
provider: ModelProvider,
custom_api_key: Optional[str] = None,
max_tokens: Optional[int] = None,
temperature: Optional[float] = None
) -> Any:
"""Initialize a specific LLM provider with given configuration."""
try:
config = self.providers_config[provider]
api_key = self._get_api_key(provider, custom_api_key)
base_url = self._get_base_url(provider)
if provider in [ModelProvider.QWEN, ModelProvider.HUGGINGFACE, ModelProvider.CUSTOM]:
return self._initialize_hf_model(config, api_key, base_url, max_tokens, temperature)
provider_initializers = {
ModelProvider.OPENAI: self._initialize_openai,
ModelProvider.ANTHROPIC: self._initialize_anthropic,
ModelProvider.GROQ: self._initialize_groq,
ModelProvider.GOOGLE: self._initialize_google
}
initializer = provider_initializers.get(provider)
if not initializer:
raise ValueError(f"Unsupported provider: {provider}")
if provider == ModelProvider.GOOGLE:
client = initializer(api_key, base_url)
return client
else:
return initializer(api_key, base_url)
except Exception as e:
logger.error(f"Error initializing provider {provider}: {str(e)}")
raise
def _initialize_hf_model(
self,
config: ProviderConfig,
api_key: Optional[str],
base_url: Optional[str],
max_tokens: Optional[int],
temperature: Optional[float]
) -> HfApiModel:
model_kwargs = {
"max_tokens": max_tokens or config.default_max_tokens,
"temperature": temperature or config.default_temperature,
"model_id": config.model_id,
"custom_role_conversions": None
}
if api_key:
model_kwargs["api_key"] = api_key
if base_url:
model_kwargs["url"] = base_url
return HfApiModel(**model_kwargs)
def _initialize_openai(self, api_key: str, base_url: Optional[str]) -> OpenAI:
kwargs = {"api_key": api_key}
if base_url:
kwargs["base_url"] = base_url
return OpenAI(**kwargs)
def _initialize_anthropic(self, api_key: str, base_url: Optional[str]) -> Anthropic:
kwargs = {"api_key": api_key}
if base_url:
kwargs["base_url"] = base_url
return Anthropic(**kwargs)
def _initialize_groq(self, api_key: str, _: Optional[str]) -> groq.Groq:
return groq.Groq(api_key=api_key)
def _initialize_google(self, api_key: str, _: Optional[str]) -> Any:
palm.configure(api_key=api_key)
return palm
model_providers = {
"Qwen": {
"model_id": "Qwen/Qwen2.5-Coder-32B-Instruct",
"api_key_env_var": None
},
"HuggingFace": {
"model_id": "https://pflgm2locj2t89co.us-east-1.aws.endpoints.huggingface.cloud",
"api_key_env_var": None
},
"OpenAI": {
"model_id": "gpt-4",
"api_key_env_var": "OPENAI_API_KEY",
"model_name_env_var": "OPENAI_MODEL_NAME",
"base_url_env_var": "OPENAI_BASE_URL"
},
"Anthropic": {
"model_id": "claude-v1",
"api_key_env_var": "ANTHROPIC_API_KEY",
"model_name_env_var": "ANTHROPIC_MODEL_NAME",
"base_url_env_var": "ANTHROPIC_BASE_URL"
},
"Groq": {
"model_id": "mixtral-8x7b-32768",
"api_key_env_var": "GROQ_API_KEY",
"model_name_env_var": "GROQ_MODEL_NAME",
"base_url_env_var": "GROQ_BASE_URL"
},
"Google": {
"model_id": "gemini-pro",
"api_key_env_var": "GOOGLE_API_KEY",
"model_name_env_var": "GOOGLE_MODEL_NAME",
"base_url_env_var": "GOOGLE_BASE_URL"
},
"Custom": {
"model_id": None,
"api_key_env_var": None,
"base_url_env_var": "CUSTOM_BASE_URL"
}
}
def launch_gradio_ui(additional_args: Optional[Dict[str, Any]] = None):
"""Launch the Gradio UI with the specified LLM provider configuration."""
if additional_args is None:
additional_args = {}
def generate_google_content(prompt: str, model: palm.GenerativeModel):
"""Helper function to generate content using the Google provider."""
try:
response = model.generate_content(prompt)
return response.text
except Exception as e:
logger.error(f"Google Palm API error: {str(e)}")
return f"Error generating text with Google Palm: {str(e)}"
provider_name = additional_args.get("selected_provider", "HuggingFace")
max_steps = int(additional_args.get("max_steps", 6))
max_tokens = int(additional_args.get("max_tokens", 1000))
temperature = float(additional_args.get("temperature", 0.5))
try:
provider = ModelProvider(provider_name)
provider_manager = LLMProviderManager()
custom_api_key = additional_args.get(f"{provider_name}_api_key")
model = provider_manager.initialize_provider(
provider=provider,
custom_api_key=custom_api_key,
max_tokens=max_tokens,
temperature=temperature
)
agent = CodeAgent(
model=generate_google_content if provider == ModelProvider.GOOGLE else model,
tools=[
final_answer, visit_webpage, web_search, image_generation_tool, get_current_time_in_timezone,
job_search_tool,
odoo_documentation_search_tool, odoo_code_agent_16_tool,
odoo_code_agent_17_tool, odoo_code_agent_18_tool
],
max_steps=max_steps,
verbosity_level=1,
grammar=None,
planning_interval=None,
name=None,
description=None,
prompt_templates=prompt_templates
)
GradioUI(agent).launch()
except Exception as e:
logger.error(f"Error launching Gradio UI: {str(e)}")
raise
launch_gradio_ui()
|