Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,30 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
2 |
+
|
3 |
+
tokenizer = AutoTokenizer.from_pretrained("AventIQ-AI/pythia-410m-chatbot")
|
4 |
+
model = AutoModelForCausalLM.from_pretrained("AventIQ-AI/pythia-410m-chatbot")
|
5 |
+
|
6 |
+
tokenizer.pad_token = tokenizer.eos_token
|
7 |
+
|
8 |
+
def chat_with_model(model, tokenizer, question, max_length=256):
|
9 |
+
"""Generate response to a question"""
|
10 |
+
input_text = question
|
11 |
+
|
12 |
+
inputs = tokenizer(input_text, return_tensors="pt", padding=True, truncation=True, max_length=512)
|
13 |
+
|
14 |
+
with torch.no_grad():
|
15 |
+
outputs = model.generate(
|
16 |
+
inputs["input_ids"],
|
17 |
+
attention_mask=inputs["attention_mask"],
|
18 |
+
max_length=max_length,
|
19 |
+
num_return_sequences=1,
|
20 |
+
temperature=1.0,
|
21 |
+
do_sample=True,
|
22 |
+
pad_token_id=tokenizer.pad_token_id
|
23 |
+
)
|
24 |
+
|
25 |
+
return tokenizer.decode(outputs[0], skip_special_tokens=True)
|
26 |
+
|
27 |
+
# Example usage
|
28 |
+
test_question = "What is the capital of France?"
|
29 |
+
response = chat_with_model(model, tokenizer, test_question)
|
30 |
+
print("Answer", response)
|