Update app.py
Browse files
app.py
CHANGED
|
@@ -1,7 +1,164 @@
|
|
| 1 |
import gradio as gr
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 2 |
|
| 3 |
-
|
| 4 |
-
return "Hello " + name + "!!"
|
| 5 |
|
| 6 |
-
|
| 7 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
+
import json
|
| 3 |
+
import librosa
|
| 4 |
+
import os
|
| 5 |
+
import soundfile as sf
|
| 6 |
+
import tempfile
|
| 7 |
+
import uuid
|
| 8 |
|
| 9 |
+
import torch
|
|
|
|
| 10 |
|
| 11 |
+
from nemo.collections.asr.models import ASRModel
|
| 12 |
+
from nemo.collections.asr.parts.utils.streaming_utils import FrameBatchMultiTaskAED
|
| 13 |
+
from nemo.collections.asr.parts.utils.transcribe_utils import get_buffered_pred_feat_multitaskAED
|
| 14 |
+
|
| 15 |
+
SAMPLE_RATE = 16000 # Hz
|
| 16 |
+
MAX_AUDIO_MINUTES = 10 # wont try to transcribe if longer than this
|
| 17 |
+
|
| 18 |
+
model = ASRModel.from_pretrained("nvidia/canary-1b")
|
| 19 |
+
model.eval()
|
| 20 |
+
|
| 21 |
+
# make sure beam size always 1 for consistency
|
| 22 |
+
model.change_decoding_strategy(None)
|
| 23 |
+
decoding_cfg = model.cfg.decoding
|
| 24 |
+
decoding_cfg.beam.beam_size = 1
|
| 25 |
+
model.change_decoding_strategy(decoding_cfg)
|
| 26 |
+
|
| 27 |
+
# setup for buffered inference
|
| 28 |
+
model.cfg.preprocessor.dither = 0.0
|
| 29 |
+
model.cfg.preprocessor.pad_to = 0
|
| 30 |
+
|
| 31 |
+
feature_stride = model.cfg.preprocessor['window_stride']
|
| 32 |
+
model_stride_in_secs = feature_stride * 8 # 8 = model stride, which is 8 for FastConformer
|
| 33 |
+
|
| 34 |
+
frame_asr = FrameBatchMultiTaskAED(
|
| 35 |
+
asr_model=model,
|
| 36 |
+
frame_len=40.0,
|
| 37 |
+
total_buffer=40.0,
|
| 38 |
+
batch_size=16,
|
| 39 |
+
)
|
| 40 |
+
|
| 41 |
+
amp_dtype = torch.float16
|
| 42 |
+
|
| 43 |
+
def convert_audio(audio_filepath, tmpdir, utt_id):
|
| 44 |
+
"""
|
| 45 |
+
Convert all files to monochannel 16 kHz wav files.
|
| 46 |
+
Do not convert and raise error if audio too long.
|
| 47 |
+
Returns output filename and duration.
|
| 48 |
+
"""
|
| 49 |
+
|
| 50 |
+
data, sr = librosa.load(audio_filepath, sr=None, mono=True)
|
| 51 |
+
|
| 52 |
+
duration = librosa.get_duration(y=data, sr=sr)
|
| 53 |
+
|
| 54 |
+
if duration / 60.0 > MAX_AUDIO_MINUTES:
|
| 55 |
+
raise gr.Error(
|
| 56 |
+
f"This demo can transcribe up to {MAX_AUDIO_MINUTES} minutes of audio. "
|
| 57 |
+
"If you wish, you may trim the audio using the Audio viewer in Step 1 "
|
| 58 |
+
"(click on the scissors icon to start trimming audio)."
|
| 59 |
+
)
|
| 60 |
+
|
| 61 |
+
if sr != SAMPLE_RATE:
|
| 62 |
+
data = librosa.resample(data, orig_sr=sr, target_sr=SAMPLE_RATE)
|
| 63 |
+
|
| 64 |
+
out_filename = os.path.join(tmpdir, utt_id + '.wav')
|
| 65 |
+
|
| 66 |
+
# save output audio
|
| 67 |
+
sf.write(out_filename, data, SAMPLE_RATE)
|
| 68 |
+
|
| 69 |
+
return out_filename, duration
|
| 70 |
+
|
| 71 |
+
|
| 72 |
+
def transcribe(audio_filepath):
|
| 73 |
+
|
| 74 |
+
if audio_filepath is None:
|
| 75 |
+
raise gr.Error("Please provide some input audio: either upload an audio file or use the microphone")
|
| 76 |
+
|
| 77 |
+
utt_id = uuid.uuid4()
|
| 78 |
+
with tempfile.TemporaryDirectory() as tmpdir:
|
| 79 |
+
converted_audio_filepath, duration = convert_audio(audio_filepath, tmpdir, str(utt_id))
|
| 80 |
+
|
| 81 |
+
# make manifest file and save
|
| 82 |
+
manifest_data = {
|
| 83 |
+
"audio_filepath": converted_audio_filepath,
|
| 84 |
+
"source_lang": "en",
|
| 85 |
+
"target_lang": "en",
|
| 86 |
+
"taskname": "asr",
|
| 87 |
+
"pnc": "yes",
|
| 88 |
+
"answer": "predict",
|
| 89 |
+
"duration": str(duration),
|
| 90 |
+
}
|
| 91 |
+
|
| 92 |
+
manifest_filepath = os.path.join(tmpdir, f'{utt_id}.json')
|
| 93 |
+
|
| 94 |
+
with open(manifest_filepath, 'w') as fout:
|
| 95 |
+
line = json.dumps(manifest_data)
|
| 96 |
+
fout.write(line + '\n')
|
| 97 |
+
|
| 98 |
+
# call transcribe, passing in manifest filepath
|
| 99 |
+
if duration < 40:
|
| 100 |
+
output_text = model.transcribe(manifest_filepath)[0]
|
| 101 |
+
else: # do buffered inference
|
| 102 |
+
with torch.cuda.amp.autocast(dtype=amp_dtype): # TODO: make it work if no cuda
|
| 103 |
+
with torch.no_grad():
|
| 104 |
+
hyps = get_buffered_pred_feat_multitaskAED(
|
| 105 |
+
frame_asr,
|
| 106 |
+
model.cfg.preprocessor,
|
| 107 |
+
model_stride_in_secs,
|
| 108 |
+
model.device,
|
| 109 |
+
manifest=manifest_filepath,
|
| 110 |
+
filepaths=None,
|
| 111 |
+
)
|
| 112 |
+
|
| 113 |
+
output_text = hyps[0].text
|
| 114 |
+
|
| 115 |
+
return output_text
|
| 116 |
+
|
| 117 |
+
|
| 118 |
+
|
| 119 |
+
with gr.Blocks(
|
| 120 |
+
title="NeMo Canary Model",
|
| 121 |
+
css="""
|
| 122 |
+
textarea { font-size: 18px;}
|
| 123 |
+
#model_output_text_box span {
|
| 124 |
+
font-size: 18px;
|
| 125 |
+
font-weight: bold;
|
| 126 |
+
}
|
| 127 |
+
""",
|
| 128 |
+
theme=gr.themes.Default(text_size=gr.themes.sizes.text_lg) # make text slightly bigger (default is text_md )
|
| 129 |
+
) as demo:
|
| 130 |
+
|
| 131 |
+
gr.HTML("<h1 style='text-align: center'>NeMo Canary model: Transcribe & Translate audio</h1>")
|
| 132 |
+
|
| 133 |
+
with gr.Row():
|
| 134 |
+
with gr.Column():
|
| 135 |
+
gr.HTML(
|
| 136 |
+
"<p><b>Step 1:</b> Upload an audio file or record with your microphone.</p>"
|
| 137 |
+
)
|
| 138 |
+
|
| 139 |
+
audio_file = gr.Audio(sources=["microphone", "upload"], type="filepath")
|
| 140 |
+
|
| 141 |
+
|
| 142 |
+
with gr.Column():
|
| 143 |
+
|
| 144 |
+
gr.HTML("<p><b>Step 3:</b> Run the model.</p>")
|
| 145 |
+
|
| 146 |
+
go_button = gr.Button(
|
| 147 |
+
value="Run model",
|
| 148 |
+
variant="primary", # make "primary" so it stands out (default is "secondary")
|
| 149 |
+
)
|
| 150 |
+
|
| 151 |
+
model_output_text_box = gr.Textbox(
|
| 152 |
+
label="Model Output",
|
| 153 |
+
elem_id="model_output_text_box",
|
| 154 |
+
)
|
| 155 |
+
|
| 156 |
+
go_button.click(
|
| 157 |
+
fn=transcribe,
|
| 158 |
+
inputs = [audio_file],
|
| 159 |
+
outputs = [model_output_text_box]
|
| 160 |
+
)
|
| 161 |
+
|
| 162 |
+
print(torch. cuda. is_available())
|
| 163 |
+
demo.queue()
|
| 164 |
+
demo.launch()
|