|
|
import os |
|
|
HF_TOKEN = os.environ["HF_TOKEN"] |
|
|
|
|
|
import re |
|
|
import spaces |
|
|
import gradio as gr |
|
|
import torch |
|
|
from transformers import AutoTokenizer, AutoModelForCausalLM |
|
|
|
|
|
tokenizer = AutoTokenizer.from_pretrained("FlawedLLM/Bhashini_gemma_merged4bit_clean_final") |
|
|
model = AutoModelForCausalLM.from_pretrained("FlawedLLM/Bhashini_gemma_merged4bit_clean_final", load_in_4bit=True, device_map="auto") |
|
|
|
|
|
|
|
|
@spaces.GPU(duration=300) |
|
|
def chunk_it(input_command, item_list): |
|
|
alpaca_prompt = """Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request. |
|
|
|
|
|
### Instruction: |
|
|
{} |
|
|
|
|
|
### Input: |
|
|
{} |
|
|
|
|
|
### Response: |
|
|
{}""" |
|
|
if item_list is not None: |
|
|
item_list = f'''The ItemName should be chosen from the given list : {item_list} , except when adding item. If ItemName does not find anything SIMILAR in the list, then the ItemName should be "Null" ''' |
|
|
inputs = tokenizer( |
|
|
[ |
|
|
alpaca_prompt.format( |
|
|
f''' |
|
|
You will receive text input that you need to analyze to perform the following tasks: |
|
|
|
|
|
transaction: Record the details of an item transaction. |
|
|
last n days transactions: Retrieve transaction records for a specified time period. |
|
|
view risk inventory: View inventory items based on a risk category. |
|
|
view inventory: View inventory details. |
|
|
new items: Add new items to the inventory. |
|
|
old items: View old items in inventory. |
|
|
report generation: Generate various inventory reports. |
|
|
Required Parameters: |
|
|
|
|
|
Each task requires specific parameters to execute correctly: |
|
|
|
|
|
transaction: |
|
|
ItemName (string) |
|
|
ItemQt (quantity - integer) |
|
|
Type (string: "sale" or "purchase" or "return") |
|
|
ShelfNo (string or integer) |
|
|
ReorderPoint (integer) |
|
|
last n days transactions: |
|
|
ItemName (string) |
|
|
Duration (integer: number of days) |
|
|
view risk inventory: |
|
|
RiskType (string: "overstock", "understock", or Null for all risk types) |
|
|
view inventory: |
|
|
ItemName (string) |
|
|
ShelfNo (string or integer) |
|
|
new items: |
|
|
ItemName (string) |
|
|
SellingPrice (number) |
|
|
CostPrice (number) |
|
|
old items: |
|
|
ShelfNo (string or integer) |
|
|
report generation: |
|
|
ItemName (string) |
|
|
Duration (integer: number of days) |
|
|
ReportType (string: "profit", "revenue", "inventory", or Null for all reports) |
|
|
|
|
|
{item_list} |
|
|
|
|
|
|
|
|
ALWAYS provide output in a JSON format.''', |
|
|
input_command, |
|
|
"", |
|
|
) |
|
|
], return_tensors = "pt").to("cuda") |
|
|
|
|
|
outputs = model.generate(**inputs, max_new_tokens = 216, use_cache = True) |
|
|
tokenizer.batch_decode(outputs) |
|
|
|
|
|
reply=tokenizer.batch_decode(outputs) |
|
|
|
|
|
pattern = r"### Response:\n(.*?)<\|end_of_text\|>" |
|
|
|
|
|
match = re.search(pattern, reply[0], re.DOTALL) |
|
|
reply = match.group(1).strip() |
|
|
|
|
|
return reply |
|
|
|
|
|
|
|
|
|
|
|
iface = gr.Interface( |
|
|
fn=chunk_it, |
|
|
inputs=[ |
|
|
gr.Textbox(label="Input Command", lines=3), |
|
|
gr.Textbox(label="Item List", lines=5) |
|
|
], |
|
|
outputs="text", |
|
|
title="Formatter Pro", |
|
|
) |
|
|
|
|
|
iface.launch(inline=False) |