File size: 3,644 Bytes
14cda64
cab275d
 
 
 
 
 
 
 
14cda64
 
 
 
cab275d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
14cda64
 
cab275d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f1f4016
cab275d
 
 
 
 
 
 
 
 
 
f1f4016
cab275d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
14cda64
 
cab275d
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
import gradio as gr
import torch
import spaces
from transformers import AutoModelForSpeechSeq2Seq, AutoProcessor, pipeline, AutoModelForSeq2SeqLM, AutoTokenizer
from datasets import load_dataset
from openvoice.api import ToneColorConverter
from openvoice import se_extractor
from melo.api import TTS
import pyaudio
import wave
import numpy as np

# Load ASR model and processor
torch_dtype = torch.float16

asr_model_id = "openai/whisper-large-v3"
asr_model = AutoModelForSpeechSeq2Seq.from_pretrained(asr_model_id, torch_dtype=torch_dtype, low_cpu_mem_usage=True, use_safetensors=True)
asr_processor = AutoProcessor.from_pretrained(asr_model_id)

asr_pipeline = pipeline(
    "automatic-speech-recognition",
    model=asr_model,
    tokenizer=asr_processor.tokenizer,
    feature_extractor=asr_processor.feature_extractor,
    max_new_tokens=128,
    chunk_length_s=30,
    batch_size=16,
    return_timestamps=True,
    torch_dtype=torch_dtype,
    device=device,
)

# Load text-to-text model and tokenizer
text_model_id = "meta-llama/Meta-Llama-3-8B"
text_model = AutoModelForSeq2SeqLM.from_pretrained(text_model_id)
text_tokenizer = AutoTokenizer.from_pretrained(text_model_id)

# Load TTS model and vocoder
tts_converter_ckpt = 'checkpoints_v2/converter'
tts_output_dir = 'outputs_v2'
os.makedirs(tts_output_dir, exist_ok=True)

tts_converter = ToneColorConverter(f'{tts_converter_ckpt}/config.json')
tts_converter.load_ckpt(f'{tts_converter_ckpt}/checkpoint.pth')

reference_speaker = 'resources/example_reference.mp3' # This is the voice you want to clone
target_se, _ = se_extractor.get_se(reference_speaker, tts_converter, vad=False)

def process_audio(input_audio):
    # Perform ASR
    asr_result = asr_pipeline(input_audio)["text"]

    # Perform text-to-text processing
    input_ids = text_tokenizer(asr_result, return_tensors="pt").input_ids.to(device)
    generated_ids = text_model.generate(input_ids, max_length=512)
    response_text = text_tokenizer.decode(generated_ids[0], skip_special_tokens=True)

    # Perform TTS
    tts_model = TTS(language='EN', device=device)
    speaker_id = list(tts_model.hps.data.spk2id.values())[0]
    tts_model.tts_to_file(response_text, speaker_id, f'{tts_output_dir}/tmp.wav')
    save_path = f'{tts_output_dir}/output_v2.wav'
    
    source_se = torch.load(f'checkpoints_v2/base_speakers/ses/english-american.pth', map_location=device)
    tts_converter.convert(audio_src_path=f'{tts_output_dir}/tmp.wav', src_se=source_se, tgt_se=target_se, output_path=save_path, message="@MyShell")

    return save_path

# Real-time audio processing

def real_time_audio_processing():
    p = pyaudio.PyAudio()
    stream = p.open(format=pyaudio.paInt16, channels=1, rate=16000, input=True, frames_per_buffer=1024)
    
    frames = []
    print("Listening...")

    while True:
        data = stream.read(1024)
        frames.append(data)
        audio_data = np.frombuffer(data, dtype=np.int16)
        if np.max(audio_data) > 3000:  # Simple VAD threshold
            wf = wave.open("input_audio.wav", 'wb')
            wf.setnchannels(1)
            wf.setsampwidth(p.get_sample_size(pyaudio.paInt16))
            wf.setframerate(16000)
            wf.writeframes(b''.join(frames))
            wf.close()
            return "input_audio.wav"

# Gradio Interface
@spaces.GPU(duration=300)
def main():
    input_audio_path = real_time_audio_processing()
    if input_audio_path:
        output_audio_path = process_audio(input_audio_path)
        return output_audio_path

iface = gr.Interface(
    fn=main,
    inputs=None,
    outputs=gr.Audio(type="filepath"),
    live=True
)

iface.launch()