File size: 25,369 Bytes
3a25d7a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
import numpy as np
from sklearn.metrics.pairwise import cosine_similarity
import statistics
import pandas as pd
from sklearn.ensemble import RandomForestClassifier
from sklearn.metrics import classification_report, confusion_matrix, \
accuracy_score, roc_auc_score, roc_curve, f1_score, recall_score, precision_score
import matplotlib.pyplot as plt
import copy
from sklearn import preprocessing, tree
from sklearn.linear_model import LogisticRegression, LinearRegression
from sklearn.tree import DecisionTreeClassifier
from scipy.spatial import distance
from sklearn.naive_bayes import GaussianNB
import itertools
import os
from sklearn.model_selection import train_test_split
import matplotlib.pyplot as plt
import random
from sklearn.utils import shuffle
from imblearn.under_sampling import NearMiss,TomekLinks
from imblearn.over_sampling import SMOTE
from collections import Counter
from imblearn.combine import SMOTETomek, SMOTEENN
from sklearn.model_selection import StratifiedKFold
from imblearn.pipeline import make_pipeline

from matplotlib import pyplot
from scipy import interp
from sklearn.metrics import roc_curve,auc

#keras
from keras.models import Sequential
from keras.layers import Dense, SimpleRNN, LSTM

# Read ComE node embs per timestep [id, emb]

folder = os.listdir('ComE_per_timestep/embs')
path = 'ComE_per_timestep/embs'
ComE_id_embs = []
for file in folder:
    ComE_id_embs.append(np.genfromtxt(os.path.join(path, file), dtype=None).tolist())

# Read ComE labels per timestep

folder = os.listdir('ComE_per_timestep/labels_pred')
path = 'ComE_per_timestep/labels_pred'
ComE_lbls = []
for file in folder:
    ComE_lbls.append(np.genfromtxt(os.path.join(path, file), dtype=None).tolist())

# Node ids per timestep

node_ids = []
for step in ComE_id_embs:
    tmp = [id_emb[0] for id_emb in step]
    node_ids.append(tmp)

# [Node_id, clr] per timestep

id_clr = []
for i in range(len(node_ids)):
    tmp = {}
    for ind,node in enumerate(node_ids[i]):
        tmp[node] = ComE_lbls[i][ind]
    id_clr.append(tmp)

# Clustered nodes per timestep
clustered_nodes_init = []
for ind,i in enumerate(id_clr):
    clrids_uniq = set(i.values())
    d = {}
    for clrid in clrids_uniq:
        d[clrid] = [k for k in i.keys() if i[k] == clrid]
    clustered_nodes_init.append(d)

clustered_nodes = []
for s in clustered_nodes_init:
    per_step = []
    for k,v in sorted(s.items()):
        per_step.append(v)
    clustered_nodes.append(per_step)
                    
# ------------------------------ READ FEATURES -------------------------------

# ComE FEATURES

folder = os.listdir('ComE_features_per_timestep/')
path = 'ComE_features_per_timestep/'
id_ComE_feats_clr = []
id_ComE_feats_out = []
id_ComE_feats_gbl = []
id_ComE_feats_clrout = []
id_ComE_feats_clrgbl = []
id_ComE_feats_all = []
for file in folder:
    df_ComE = pd.read_csv(os.path.join(path,file), names=['node_id', \
        'distin_med_eucl', 'distin_med_cos', 'distin_med_l1',\
        'distout_med_eucl', 'distout_med_cos', 'distout_med_l1',\
        'distin_eucl_max', 'distin_eucl_min', 'distin_eucl_avg',\
        'distin_cos_max', 'distin_cos_min', 'distin_cos_avg',\
        'distin_l1_max', 'distin_l1_min', 'distin_l1_avg',\
        'distout_eucl_max', 'distout_eucl_min', 'distout_eucl_avg',\
        'distout_cos_max', 'distout_cos_min', 'distout_cos_avg',\
        'distout_l1_max', 'distout_l1_min', 'distout_l1_avg', \
        'dist_glob_max_eucl', 'dist_glob_min_eucl', 'dist_glob_avg_eucl', \
        'dist_glob_max_cos', 'dist_glob_min_cos', 'dist_glob_avg_cos', \
        'dist_glob_max_l1', 'dist_glob_min_l1',  'dist_glob_avg_l1'], skiprows=1)
    df_ComE_clr = df_ComE[['node_id', 'distin_med_eucl', \
                          'distin_eucl_max', 'distin_eucl_min', 'distin_eucl_avg']]
    df_ComE_out = df_ComE[['node_id', 'distout_med_eucl', \
                        'distout_eucl_max', 'distout_eucl_min', 'distout_eucl_avg']]
    df_ComE_gbl = df_ComE[['node_id', 'distout_med_eucl', \
                        'dist_glob_max_eucl', 'dist_glob_min_eucl', 'dist_glob_avg_eucl']]
    df_ComE_clrout = df_ComE[['node_id', 'distin_med_eucl', 'distout_med_eucl', \
                          'distin_eucl_max', 'distin_eucl_min', 'distin_eucl_avg', \
                        'distout_eucl_max', 'distout_eucl_min', 'distout_eucl_avg']]
    df_ComE_clrgbl = df_ComE[['node_id', 'distin_med_eucl', \
                          'distin_eucl_max', 'distin_eucl_min', 'distin_eucl_avg', \
                        'dist_glob_max_eucl', 'dist_glob_min_eucl', 'dist_glob_avg_eucl']]
    df_ComE_all = df_ComE[['node_id', 'distin_med_eucl', 'distout_med_eucl', \
                          'distin_eucl_max', 'distin_eucl_min', 'distin_eucl_avg', \
                        'distout_eucl_max', 'distout_eucl_min', 'distout_eucl_avg', \
                        'dist_glob_max_eucl', 'dist_glob_min_eucl', 'dist_glob_avg_eucl']]
    df_ComE_clr_lst = df_ComE_clr.values.tolist()
    df_ComE_out_lst = df_ComE_out.values.tolist()
    df_ComE_gbl_lst = df_ComE_gbl.values.tolist()
    df_ComE_clrout_lst = df_ComE_clrout.values.tolist()
    df_ComE_clrgbl_lst = df_ComE_clrgbl.values.tolist()
    df_ComE_all_lst = df_ComE_all.values.tolist()
    id_ComE_feats_clr.append(df_ComE_clr_lst)
    id_ComE_feats_out.append(df_ComE_out_lst)
    id_ComE_feats_gbl.append(df_ComE_gbl_lst)
    id_ComE_feats_clrout.append(df_ComE_clrout_lst)
    id_ComE_feats_clrgbl.append(df_ComE_clrgbl_lst)
    id_ComE_feats_all.append(df_ComE_all_lst)
#sort by node id
for i in id_ComE_feats_clr:
    i.sort()
for i in id_ComE_feats_out:
    i.sort()
for i in id_ComE_feats_gbl:
    i.sort()
for i in id_ComE_feats_clrout:
    i.sort()
for i in id_ComE_feats_clrgbl:
    i.sort()
for i in id_ComE_feats_all:
    i.sort()

# Classic FEATURES

folder = os.listdir('classic_features_per_timestep/classic_features')
path = 'classic_features_per_timestep/classic_features'
id_classic_clr = []
id_classic_gbl = []
id_classic_all = []
id_classic_nodeg = []
for file in folder:
    df_classic = pd.read_csv(os.path.join(path,file), names=['node_id', \
    'degree', 'betweenness', 'closeness', 'eigenvector', \
    'degree_ntwk', 'betweenness_ntwk', 'closeness_ntwk', 'eigenvector_ntwk'], \
    skiprows=1)
    df_classic_clr = df_classic[['node_id', \
                    'degree', 'betweenness', 'closeness', 'eigenvector']]
    df_classic_gbl = df_classic[['node_id', \
    'degree_ntwk', 'betweenness_ntwk', 'closeness_ntwk', 'eigenvector_ntwk']]
    df_classic_nodeg = pd.read_csv(os.path.join(path,file), names=['node_id', \
    'betweenness', 'closeness', 'eigenvector', \
    'betweenness_ntwk', 'closeness_ntwk', 'eigenvector_ntwk'], \
    skiprows=1)
    df_classic_all_lst = df_classic.values.tolist()
    df_classic_clr_lst = df_classic_clr.values.tolist()
    id_classic_gbl_lst = df_classic_gbl.values.tolist()
    id_classic_nodeg_lst = df_classic_nodeg.values.tolist()
    id_classic_all.append(df_classic_all_lst)
    id_classic_clr.append(df_classic_clr_lst)
    id_classic_gbl.append(id_classic_gbl_lst)
    id_classic_nodeg.append(id_classic_nodeg_lst)
#sort by node id
for i in id_classic_all:
    i.sort()
for i in id_classic_clr:
    i.sort()
for i in id_classic_gbl:
    i.sort()
for i in id_classic_nodeg:
    i.sort()

id_combo_ComE_clrout_classic_all = []
for ind,s in enumerate(id_ComE_feats_clrout):
    temp = []
    for inx,row in enumerate(s):
        tmp = row[:]
        tmp.extend(id_classic_all[ind][inx][1:])
        temp.append(tmp)
    id_combo_ComE_clrout_classic_all.append(temp)

#-------------------------------- MATCHING ------------------------------------

# [clr_x_tn, clr_y_tn+1, common_nodes_tn_tn+1]
#print(clustered_nodes[0])
matching = []
a = 0
while a<len(clustered_nodes)-1:
    matching_two = []
    for indcurr,clrcurr in enumerate(clustered_nodes[a]):
        tmp = []
        for indnxt,clrnxt in enumerate(clustered_nodes[a+1]):
            num_of_common = len(list(set(clrcurr)&set(clrnxt)))
            tmp.append([indcurr,indnxt,num_of_common])
        tmp_max = max(item[-1] for item in tmp)
        for t in tmp:
            if t[-1] == tmp_max:
                maxtmp = t
        matching_two.append(maxtmp)
    matching.append(matching_two)
    a += 1
#print(matching,a)




#--------------------------------- CHAINS -------------------------------------
#************ SCD    #Stay-Change-Drop
# 2-chain
def twoChain_scd(features):
    two_chain_scd = []
    for ind,step in enumerate(matching[:-1]):
        per_step = []
        for inx,clr in enumerate(step):
            for nodeid in clustered_nodes[ind][clr[0]]:
                tmp = [nodeid]
                for idfeatures in features[ind]:
                    if nodeid == idfeatures[0]:
                        tmp.extend(idfeatures[1:])
                if nodeid in clustered_nodes[ind+1][clr[1]]:
                    tmp.append(0)#stay
                    #for idfeatures in features[ind+1]:  remove second set of features
                        #if nodeid == idfeatures[0]:
                            #tmp.extend(idfeatures[1:])
                    '''for cl in matching[ind+1]:   
                        if nodeid in clustered_nodes[ind+1][cl[0]]:
                            if nodeid in clustered_nodes[ind+2][cl[1]]:
                                tmp.append(0)#stay
                                break
                            elif nodeid in node_ids[ind+2]:
                                tmp.append(1)#move
                                break
                            else:
                                tmp.append(2)#drop
                                break'''
                elif nodeid in node_ids[ind+1]:
                    tmp.append(1)#move
                    #for idfeatures in features[ind+1]:
                        #if nodeid == idfeatures[0]:
                            #tmp.extend(idfeatures[1:])
                    #for cl in matching[ind+1]:
                        #if nodeid in clustered_nodes[ind+1][cl[0]]:
                            #if nodeid in clustered_nodes[ind+2][cl[1]]:
                                #tmp.append(0)#stay
                               # break
                            #elif nodeid in node_ids[ind+2]:
                               # tmp.append(1)#move
                               # break
                           # else:
                              #  tmp.append(2)#drop
                               # break
                else:
                  #  tmp.extend([-1]*(len(features[0][0][1:])+1))  remove extend vasia
                    tmp.append(2)#drop
                per_step.append(tmp)
        two_chain_scd.append(per_step)
    return(two_chain_scd)

def chains_scd(prev_chain_scd, features, a):
    curr_chain_scd = copy.deepcopy(prev_chain_scd[:-1])
    for ind,step in enumerate(curr_chain_scd):
        for row in step:
            if row[-1] == 0 or row[-1] == 1:
                for idfeatures in features[ind+2+a]:
                    if row[0] == idfeatures[0]:
                        row.extend(idfeatures[1:])
                for cl in matching[ind+2+a]:
                    if row[0] in clustered_nodes[ind+2+a][cl[0]]:
                        if row[0] in clustered_nodes[ind+3+a][cl[1]]:
                            row.append(0)#stay
                            break
                        elif row[0] in node_ids[ind+3+a]:
                            row.append(1)#move
                            break
                        else:
                            row.append(2)#drop
                            break
            else:
                row[-1:-1] = [-1]*(len(features[0][0][1:])+1)#add -1*(#feats + ev)
    return(curr_chain_scd)

# ----------------------------------------------------------------------------

#************ SL
def chains_sl(chainsSCD):         #Stay-Leave
    chainsSL = copy.deepcopy(chainsSCD)
    for row in chainsSL:
        if row[-1] == 2:
            row[-1] = 1
    return(chainsSL)

# ----------------------------------------------------------------------------

#************ SC        #Stay-Change
def chains_sc(chainsSCD):
    chainsSC = []
    for row in chainsSCD:
        if row[-1] != 2:
            chainsSC.append(row)
    return(chainsSC)

# ----------------------------------------------------------------------------

def per_chain_all_chains_scd(feats):
    two_chain_scd = twoChain_scd(feats)
    three_chain_scd = chains_scd(two_chain_scd, feats, 0)
    four_chain_scd = chains_scd(three_chain_scd, feats, 1)
    five_chain_scd = chains_scd(four_chain_scd, feats, 2)
    six_chain_scd = chains_scd(five_chain_scd, feats, 3)
    seven_chain_scd = chains_scd(six_chain_scd, feats, 4)
    eight_chain_scd = chains_scd(seven_chain_scd, feats, 5)
    nine_chain_scd = chains_scd(eight_chain_scd, feats, 6)
    two_chain_scd = [row for s in two_chain_scd for row in s]#flat
    three_chain_scd = [row for s in three_chain_scd for row in s]#flat
    four_chain_scd = [row for s in four_chain_scd for row in s]#flat
    five_chain_scd = [row for s in five_chain_scd for row in s]#flat
    six_chain_scd = [row for s in six_chain_scd for row in s]#flat
    seven_chain_scd = [row for s in seven_chain_scd for row in s]#flat
    eight_chain_scd = [row for s in eight_chain_scd for row in s]#flat
    nine_chain_scd = [row for s in nine_chain_scd for row in s]#flat
    # merge chains
    all_chains_scd = []
    all_chains_scd.append(two_chain_scd)
    all_chains_scd.append(three_chain_scd)
    all_chains_scd.append(four_chain_scd)
    all_chains_scd.append(five_chain_scd)
    all_chains_scd.append(six_chain_scd)
    all_chains_scd.append(seven_chain_scd)
    all_chains_scd.append(eight_chain_scd)
    all_chains_scd.append(nine_chain_scd)
    all_chains_scd = [row for chain in all_chains_scd for row in chain]
    return(two_chain_scd, three_chain_scd, four_chain_scd, five_chain_scd, \
           six_chain_scd, seven_chain_scd, eight_chain_scd, nine_chain_scd, \
               all_chains_scd)

# ----------------------------------------------------------------------------

# CHAINS ----------------------
# ComE

# clr
two_chain_ComE_clr_scd, three_chain_ComE_clr_scd, four_chain_ComE_clr_scd, \
    five_chain_ComE_clr_scd, six_chain_ComE_clr_scd, seven_chain_ComE_clr_scd, \
    eight_chain_ComE_clr_scd, nine_chain_ComE_clr_scd, \
    chains_ComE_clr_scd = per_chain_all_chains_scd(id_ComE_feats_clr)
# per chain
two_chain_ComE_clr_sl = chains_sl(two_chain_ComE_clr_scd)
two_chain_ComE_clr_sc = chains_sc(two_chain_ComE_clr_scd)
three_chain_ComE_clr_sl = chains_sl(three_chain_ComE_clr_scd)
three_chain_ComE_clr_sc = chains_sc(three_chain_ComE_clr_scd)
four_chain_ComE_clr_sl = chains_sl(four_chain_ComE_clr_scd)
four_chain_ComE_clr_sc = chains_sc(four_chain_ComE_clr_scd)
five_chain_ComE_clr_sl = chains_sl(five_chain_ComE_clr_scd)
five_chain_ComE_clr_sc = chains_sc(five_chain_ComE_clr_scd)
six_chain_ComE_clr_sl = chains_sl(six_chain_ComE_clr_scd)
six_chain_ComE_clr_sc = chains_sc(six_chain_ComE_clr_scd)
seven_chain_ComE_clr_sl = chains_sl(seven_chain_ComE_clr_scd)
seven_chain_ComE_clr_sc = chains_sc(seven_chain_ComE_clr_scd)
eight_chain_ComE_clr_sl = chains_sl(eight_chain_ComE_clr_scd)
eight_chain_ComE_clr_sc = chains_sc(eight_chain_ComE_clr_scd)
nine_chain_ComE_clr_sl = chains_sl(nine_chain_ComE_clr_scd)
nine_chain_ComE_clr_sc = chains_sc(nine_chain_ComE_clr_scd)
# SL
chains_ComE_clr_sl = chains_sl(chains_ComE_clr_scd)
# SC
chains_ComE_clr_sc = chains_sc(chains_ComE_clr_scd)

# out
two_chain_ComE_out_scd, three_chain_ComE_out_scd, four_chain_ComE_out_scd, \
    five_chain_ComE_out_scd, six_chain_ComE_out_scd, seven_chain_ComE_out_scd, \
    eight_chain_ComE_out_scd, nine_chain_ComE_out_scd, \
    chains_ComE_out_scd = per_chain_all_chains_scd(id_ComE_feats_out)
# per chain
two_chain_ComE_out_sl = chains_sl(two_chain_ComE_out_scd)
two_chain_ComE_out_sc = chains_sc(two_chain_ComE_out_scd)
three_chain_ComE_out_sl = chains_sl(three_chain_ComE_out_scd)
three_chain_ComE_out_sc = chains_sc(three_chain_ComE_out_scd)
four_chain_ComE_out_sl = chains_sl(four_chain_ComE_out_scd)
four_chain_ComE_out_sc = chains_sc(four_chain_ComE_out_scd)
five_chain_ComE_out_sl = chains_sl(five_chain_ComE_out_scd)
five_chain_ComE_out_sc = chains_sc(five_chain_ComE_out_scd)
six_chain_ComE_out_sl = chains_sl(six_chain_ComE_out_scd)
six_chain_ComE_out_sc = chains_sc(six_chain_ComE_out_scd)
seven_chain_ComE_out_sl = chains_sl(seven_chain_ComE_out_scd)
seven_chain_ComE_out_sc = chains_sc(seven_chain_ComE_out_scd)
eight_chain_ComE_out_sl = chains_sl(eight_chain_ComE_out_scd)
eight_chain_ComE_out_sc = chains_sc(eight_chain_ComE_out_scd)
nine_chain_ComE_out_sl = chains_sl(nine_chain_ComE_out_scd)
nine_chain_ComE_out_sc = chains_sc(nine_chain_ComE_out_scd)
# SL
chains_ComE_out_sl = chains_sl(chains_ComE_out_scd)
# SC
chains_ComE_out_sc = chains_sc(chains_ComE_out_scd)

# clrout
two_chain_ComE_clrout_scd, three_chain_ComE_clrout_scd, four_chain_ComE_clrout_scd, \
    five_chain_ComE_clrout_scd, six_chain_ComE_clrout_scd, seven_chain_ComE_clrout_scd, \
    eight_chain_ComE_clrout_scd, nine_chain_ComE_clrout_scd, \
    chains_ComE_clrout_scd = per_chain_all_chains_scd(id_ComE_feats_clrout)
# per chain
two_chain_ComE_clrout_sl = chains_sl(two_chain_ComE_clrout_scd)
two_chain_ComE_clrout_sc = chains_sc(two_chain_ComE_clrout_scd)
three_chain_ComE_clrout_sl = chains_sl(three_chain_ComE_clrout_scd)
three_chain_ComE_clrout_sc = chains_sc(three_chain_ComE_clrout_scd)
four_chain_ComE_clrout_sl = chains_sl(four_chain_ComE_clrout_scd)
four_chain_ComE_clrout_sc = chains_sc(four_chain_ComE_clrout_scd)
five_chain_ComE_clrout_sl = chains_sl(five_chain_ComE_clrout_scd)
five_chain_ComE_clrout_sc = chains_sc(five_chain_ComE_clrout_scd)
six_chain_ComE_clrout_sl = chains_sl(six_chain_ComE_clrout_scd)
six_chain_ComE_clrout_sc = chains_sc(six_chain_ComE_clrout_scd)
seven_chain_ComE_clrout_sl = chains_sl(seven_chain_ComE_clrout_scd)
seven_chain_ComE_clrout_sc = chains_sc(seven_chain_ComE_clrout_scd)
eight_chain_ComE_clrout_sl = chains_sl(eight_chain_ComE_clrout_scd)
eight_chain_ComE_clrout_sc = chains_sc(eight_chain_ComE_clrout_scd)
nine_chain_ComE_clrout_sl = chains_sl(nine_chain_ComE_clrout_scd)
nine_chain_ComE_clrout_sc = chains_sc(nine_chain_ComE_clrout_scd)
# SL
chains_ComE_clrout_sl = chains_sl(chains_ComE_clrout_scd)
# SC
chains_ComE_clrout_sc = chains_sc(chains_ComE_clrout_scd)



# ----------------------------------------------------------------------------

# Classic
#clr
# SCD
two_chain_classic_clr_scd, three_chain_classic_clr_scd, four_chain_classic_clr_scd, \
    five_chain_classic_clr_scd, six_chain_classic_clr_scd, seven_chain_classic_clr_scd, \
        eight_chain_classic_clr_scd, nine_chain_classic_clr_scd, \
    chains_classic_clr_scd = per_chain_all_chains_scd(id_classic_clr)
# per chain
two_chain_classic_clr_sl = chains_sl(two_chain_classic_clr_scd)
two_chain_classic_clr_sc = chains_sc(two_chain_classic_clr_scd)
three_chain_classic_clr_sl = chains_sl(three_chain_classic_clr_scd)
three_chain_classic_clr_sc = chains_sc(three_chain_classic_clr_scd)
four_chain_classic_clr_sl = chains_sl(four_chain_classic_clr_scd)
four_chain_classic_clr_sc = chains_sc(four_chain_classic_clr_scd)
five_chain_classic_clr_sl = chains_sl(five_chain_classic_clr_scd)
five_chain_classic_clr_sc = chains_sc(five_chain_classic_clr_scd)
six_chain_classic_clr_sl = chains_sl(six_chain_classic_clr_scd)
six_chain_classic_clr_sc = chains_sc(six_chain_classic_clr_scd)
seven_chain_classic_clr_sl = chains_sl(seven_chain_classic_clr_scd)
seven_chain_classic_clr_sc = chains_sc(seven_chain_classic_clr_scd)
eight_chain_classic_clr_sl = chains_sl(eight_chain_classic_clr_scd)
eight_chain_classic_clr_sc = chains_sc(eight_chain_classic_clr_scd)
nine_chain_classic_clr_sl = chains_sl(nine_chain_classic_clr_scd)
nine_chain_classic_clr_sc = chains_sc(nine_chain_classic_clr_scd)

# SL
chains_classic_clr_sl = chains_sl(chains_classic_clr_scd)
# SC
chains_classic_clr_sc = chains_sc(chains_classic_clr_scd)

#gbl
# SCD
two_chain_classic_gbl_scd, three_chain_classic_gbl_scd, four_chain_classic_gbl_scd, \
    five_chain_classic_gbl_scd, six_chain_classic_gbl_scd, seven_chain_classic_gbl_scd, \
        eight_chain_classic_gbl_scd, nine_chain_classic_gbl_scd, \
    chains_classic_gbl_scd = per_chain_all_chains_scd(id_classic_gbl)
# per chain
two_chain_classic_gbl_sl = chains_sl(two_chain_classic_gbl_scd)
two_chain_classic_gbl_sc = chains_sc(two_chain_classic_gbl_scd)
three_chain_classic_gbl_sl = chains_sl(three_chain_classic_gbl_scd)
three_chain_classic_gbl_sc = chains_sc(three_chain_classic_gbl_scd)
four_chain_classic_gbl_sl = chains_sl(four_chain_classic_gbl_scd)
four_chain_classic_gbl_sc = chains_sc(four_chain_classic_gbl_scd)
five_chain_classic_gbl_sl = chains_sl(five_chain_classic_gbl_scd)
five_chain_classic_gbl_sc = chains_sc(five_chain_classic_gbl_scd)
six_chain_classic_gbl_sl = chains_sl(six_chain_classic_gbl_scd)
six_chain_classic_gbl_sc = chains_sc(six_chain_classic_gbl_scd)
seven_chain_classic_gbl_sl = chains_sl(seven_chain_classic_gbl_scd)
seven_chain_classic_gbl_sc = chains_sc(seven_chain_classic_gbl_scd)
eight_chain_classic_gbl_sl = chains_sl(eight_chain_classic_gbl_scd)
eight_chain_classic_gbl_sc = chains_sc(eight_chain_classic_gbl_scd)
nine_chain_classic_gbl_sl = chains_sl(nine_chain_classic_gbl_scd)
nine_chain_classic_gbl_sc = chains_sc(nine_chain_classic_gbl_scd)

# SL
chains_classic_gbl_sl = chains_sl(chains_classic_gbl_scd)
# SC
chains_classic_gbl_sc = chains_sc(chains_classic_gbl_scd)

#all
# SCD
two_chain_classic_all_scd, three_chain_classic_all_scd, four_chain_classic_all_scd, \
    five_chain_classic_all_scd, six_chain_classic_all_scd, seven_chain_classic_all_scd, \
        eight_chain_classic_all_scd, nine_chain_classic_all_scd, \
    chains_classic_all_scd = per_chain_all_chains_scd(id_classic_all)
# per chain
two_chain_classic_all_sl = chains_sl(two_chain_classic_all_scd)
two_chain_classic_all_sc = chains_sc(two_chain_classic_all_scd)
three_chain_classic_all_sl = chains_sl(three_chain_classic_all_scd)
three_chain_classic_all_sc = chains_sc(three_chain_classic_all_scd)
four_chain_classic_all_sl = chains_sl(four_chain_classic_all_scd)
four_chain_classic_all_sc = chains_sc(four_chain_classic_all_scd)
five_chain_classic_all_sl = chains_sl(five_chain_classic_all_scd)
five_chain_classic_all_sc = chains_sc(five_chain_classic_all_scd)
six_chain_classic_all_sl = chains_sl(six_chain_classic_all_scd)
six_chain_classic_all_sc = chains_sc(six_chain_classic_all_scd)
seven_chain_classic_all_sl = chains_sl(seven_chain_classic_all_scd)
seven_chain_classic_all_sc = chains_sc(seven_chain_classic_all_scd)
eight_chain_classic_all_sl = chains_sl(eight_chain_classic_all_scd)
eight_chain_classic_all_sc = chains_sc(eight_chain_classic_all_scd)
nine_chain_classic_all_sl = chains_sl(nine_chain_classic_all_scd)
nine_chain_classic_all_sc = chains_sc(nine_chain_classic_all_scd)

# SL
chains_classic_all_sl = chains_sl(chains_classic_all_scd)
# SC
chains_classic_all_sc = chains_sc(chains_classic_all_scd)


#RNN model
def create_RNN(hidden_units, dense_units, input_shape, activation):
    model=Sequential()
    model.add(LSTM(hidden_units,input_shape=input_shape))
    model.add(Dense(units=dense_units,activation=activation))
    model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy'])
    model.summary() 
    return model

# stratified kfold 
def Classification(chain):
    #print("chain1 = ",len(chain),chain[0])
   
    chain = shuffle(np.array(chain))
    print("chain2 = ",chain.shape)
    X = [i[1:-1] for i in chain.tolist()]
    Y = [i[-1] for i in chain.tolist()]

    # padding
    longest = len(max(X,key=len))
    print(longest)

    for row in X:
        while len(row)<longest:
            row.append(-99)
    #######
    X = np.array(X)
    Y = np.array(Y)
    print('Y_dataset:', Counter(Y))
    skf = StratifiedKFold(n_splits=5)
    fold = 0
    k=0
    cvscores = []
    for train_index, test_index in skf.split(X, Y):
        X_train, X_test = X[train_index], X[test_index]
        
        y_train, y_test = Y[train_index], Y[test_index]
        y_train_cnt = pd.DataFrame([Counter(y_train)]).transpose()
        print(y_train_cnt)
        y_train_cnt.sort_index(inplace=True)
        print('y_train:', y_train_cnt)
       # print("X",X_train.shape,X_train[0])

        X_train_3d = X_train.reshape((X_train.shape[0], 4, 1))
        X_test_3d = X_test.reshape((X_test.shape[0], 4, 1))
       # print(X_test_3d)
   
        rnn_model = create_RNN(100,2,input_shape=(4,1),activation='sigmoid')

        rnn_model.fit(X_train_3d, y_train, epochs=50, batch_size=5,verbose=2)
        #test_pred = rnn_model.predict(X_test_3d)
       
        scores = rnn_model.evaluate(X_test_3d, y_test, verbose=0)
        print("score",scores)
        exit()
        print("%s: %.2f%%" % (rnn_model.metrics_names[1], scores[1]*100))
        cvscores.append(scores[1] * 100)
    print("%.2f%% (+/- %.2f%%)" % (np.mean(cvscores), np.std(cvscores)))




    # Classic features
    # clr - 1 chain
with open('results_details.csv','a') as fd:
    fd.write('two_chain_classic_clr_sl'+'\n')
with open('results.csv','a') as fd:
    fd.write('two_chain_classic_clr_sl'+'\n')
Classification(two_chain_classic_clr_sl)