File size: 25,369 Bytes
3a25d7a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 |
import numpy as np
from sklearn.metrics.pairwise import cosine_similarity
import statistics
import pandas as pd
from sklearn.ensemble import RandomForestClassifier
from sklearn.metrics import classification_report, confusion_matrix, \
accuracy_score, roc_auc_score, roc_curve, f1_score, recall_score, precision_score
import matplotlib.pyplot as plt
import copy
from sklearn import preprocessing, tree
from sklearn.linear_model import LogisticRegression, LinearRegression
from sklearn.tree import DecisionTreeClassifier
from scipy.spatial import distance
from sklearn.naive_bayes import GaussianNB
import itertools
import os
from sklearn.model_selection import train_test_split
import matplotlib.pyplot as plt
import random
from sklearn.utils import shuffle
from imblearn.under_sampling import NearMiss,TomekLinks
from imblearn.over_sampling import SMOTE
from collections import Counter
from imblearn.combine import SMOTETomek, SMOTEENN
from sklearn.model_selection import StratifiedKFold
from imblearn.pipeline import make_pipeline
from matplotlib import pyplot
from scipy import interp
from sklearn.metrics import roc_curve,auc
#keras
from keras.models import Sequential
from keras.layers import Dense, SimpleRNN, LSTM
# Read ComE node embs per timestep [id, emb]
folder = os.listdir('ComE_per_timestep/embs')
path = 'ComE_per_timestep/embs'
ComE_id_embs = []
for file in folder:
ComE_id_embs.append(np.genfromtxt(os.path.join(path, file), dtype=None).tolist())
# Read ComE labels per timestep
folder = os.listdir('ComE_per_timestep/labels_pred')
path = 'ComE_per_timestep/labels_pred'
ComE_lbls = []
for file in folder:
ComE_lbls.append(np.genfromtxt(os.path.join(path, file), dtype=None).tolist())
# Node ids per timestep
node_ids = []
for step in ComE_id_embs:
tmp = [id_emb[0] for id_emb in step]
node_ids.append(tmp)
# [Node_id, clr] per timestep
id_clr = []
for i in range(len(node_ids)):
tmp = {}
for ind,node in enumerate(node_ids[i]):
tmp[node] = ComE_lbls[i][ind]
id_clr.append(tmp)
# Clustered nodes per timestep
clustered_nodes_init = []
for ind,i in enumerate(id_clr):
clrids_uniq = set(i.values())
d = {}
for clrid in clrids_uniq:
d[clrid] = [k for k in i.keys() if i[k] == clrid]
clustered_nodes_init.append(d)
clustered_nodes = []
for s in clustered_nodes_init:
per_step = []
for k,v in sorted(s.items()):
per_step.append(v)
clustered_nodes.append(per_step)
# ------------------------------ READ FEATURES -------------------------------
# ComE FEATURES
folder = os.listdir('ComE_features_per_timestep/')
path = 'ComE_features_per_timestep/'
id_ComE_feats_clr = []
id_ComE_feats_out = []
id_ComE_feats_gbl = []
id_ComE_feats_clrout = []
id_ComE_feats_clrgbl = []
id_ComE_feats_all = []
for file in folder:
df_ComE = pd.read_csv(os.path.join(path,file), names=['node_id', \
'distin_med_eucl', 'distin_med_cos', 'distin_med_l1',\
'distout_med_eucl', 'distout_med_cos', 'distout_med_l1',\
'distin_eucl_max', 'distin_eucl_min', 'distin_eucl_avg',\
'distin_cos_max', 'distin_cos_min', 'distin_cos_avg',\
'distin_l1_max', 'distin_l1_min', 'distin_l1_avg',\
'distout_eucl_max', 'distout_eucl_min', 'distout_eucl_avg',\
'distout_cos_max', 'distout_cos_min', 'distout_cos_avg',\
'distout_l1_max', 'distout_l1_min', 'distout_l1_avg', \
'dist_glob_max_eucl', 'dist_glob_min_eucl', 'dist_glob_avg_eucl', \
'dist_glob_max_cos', 'dist_glob_min_cos', 'dist_glob_avg_cos', \
'dist_glob_max_l1', 'dist_glob_min_l1', 'dist_glob_avg_l1'], skiprows=1)
df_ComE_clr = df_ComE[['node_id', 'distin_med_eucl', \
'distin_eucl_max', 'distin_eucl_min', 'distin_eucl_avg']]
df_ComE_out = df_ComE[['node_id', 'distout_med_eucl', \
'distout_eucl_max', 'distout_eucl_min', 'distout_eucl_avg']]
df_ComE_gbl = df_ComE[['node_id', 'distout_med_eucl', \
'dist_glob_max_eucl', 'dist_glob_min_eucl', 'dist_glob_avg_eucl']]
df_ComE_clrout = df_ComE[['node_id', 'distin_med_eucl', 'distout_med_eucl', \
'distin_eucl_max', 'distin_eucl_min', 'distin_eucl_avg', \
'distout_eucl_max', 'distout_eucl_min', 'distout_eucl_avg']]
df_ComE_clrgbl = df_ComE[['node_id', 'distin_med_eucl', \
'distin_eucl_max', 'distin_eucl_min', 'distin_eucl_avg', \
'dist_glob_max_eucl', 'dist_glob_min_eucl', 'dist_glob_avg_eucl']]
df_ComE_all = df_ComE[['node_id', 'distin_med_eucl', 'distout_med_eucl', \
'distin_eucl_max', 'distin_eucl_min', 'distin_eucl_avg', \
'distout_eucl_max', 'distout_eucl_min', 'distout_eucl_avg', \
'dist_glob_max_eucl', 'dist_glob_min_eucl', 'dist_glob_avg_eucl']]
df_ComE_clr_lst = df_ComE_clr.values.tolist()
df_ComE_out_lst = df_ComE_out.values.tolist()
df_ComE_gbl_lst = df_ComE_gbl.values.tolist()
df_ComE_clrout_lst = df_ComE_clrout.values.tolist()
df_ComE_clrgbl_lst = df_ComE_clrgbl.values.tolist()
df_ComE_all_lst = df_ComE_all.values.tolist()
id_ComE_feats_clr.append(df_ComE_clr_lst)
id_ComE_feats_out.append(df_ComE_out_lst)
id_ComE_feats_gbl.append(df_ComE_gbl_lst)
id_ComE_feats_clrout.append(df_ComE_clrout_lst)
id_ComE_feats_clrgbl.append(df_ComE_clrgbl_lst)
id_ComE_feats_all.append(df_ComE_all_lst)
#sort by node id
for i in id_ComE_feats_clr:
i.sort()
for i in id_ComE_feats_out:
i.sort()
for i in id_ComE_feats_gbl:
i.sort()
for i in id_ComE_feats_clrout:
i.sort()
for i in id_ComE_feats_clrgbl:
i.sort()
for i in id_ComE_feats_all:
i.sort()
# Classic FEATURES
folder = os.listdir('classic_features_per_timestep/classic_features')
path = 'classic_features_per_timestep/classic_features'
id_classic_clr = []
id_classic_gbl = []
id_classic_all = []
id_classic_nodeg = []
for file in folder:
df_classic = pd.read_csv(os.path.join(path,file), names=['node_id', \
'degree', 'betweenness', 'closeness', 'eigenvector', \
'degree_ntwk', 'betweenness_ntwk', 'closeness_ntwk', 'eigenvector_ntwk'], \
skiprows=1)
df_classic_clr = df_classic[['node_id', \
'degree', 'betweenness', 'closeness', 'eigenvector']]
df_classic_gbl = df_classic[['node_id', \
'degree_ntwk', 'betweenness_ntwk', 'closeness_ntwk', 'eigenvector_ntwk']]
df_classic_nodeg = pd.read_csv(os.path.join(path,file), names=['node_id', \
'betweenness', 'closeness', 'eigenvector', \
'betweenness_ntwk', 'closeness_ntwk', 'eigenvector_ntwk'], \
skiprows=1)
df_classic_all_lst = df_classic.values.tolist()
df_classic_clr_lst = df_classic_clr.values.tolist()
id_classic_gbl_lst = df_classic_gbl.values.tolist()
id_classic_nodeg_lst = df_classic_nodeg.values.tolist()
id_classic_all.append(df_classic_all_lst)
id_classic_clr.append(df_classic_clr_lst)
id_classic_gbl.append(id_classic_gbl_lst)
id_classic_nodeg.append(id_classic_nodeg_lst)
#sort by node id
for i in id_classic_all:
i.sort()
for i in id_classic_clr:
i.sort()
for i in id_classic_gbl:
i.sort()
for i in id_classic_nodeg:
i.sort()
id_combo_ComE_clrout_classic_all = []
for ind,s in enumerate(id_ComE_feats_clrout):
temp = []
for inx,row in enumerate(s):
tmp = row[:]
tmp.extend(id_classic_all[ind][inx][1:])
temp.append(tmp)
id_combo_ComE_clrout_classic_all.append(temp)
#-------------------------------- MATCHING ------------------------------------
# [clr_x_tn, clr_y_tn+1, common_nodes_tn_tn+1]
#print(clustered_nodes[0])
matching = []
a = 0
while a<len(clustered_nodes)-1:
matching_two = []
for indcurr,clrcurr in enumerate(clustered_nodes[a]):
tmp = []
for indnxt,clrnxt in enumerate(clustered_nodes[a+1]):
num_of_common = len(list(set(clrcurr)&set(clrnxt)))
tmp.append([indcurr,indnxt,num_of_common])
tmp_max = max(item[-1] for item in tmp)
for t in tmp:
if t[-1] == tmp_max:
maxtmp = t
matching_two.append(maxtmp)
matching.append(matching_two)
a += 1
#print(matching,a)
#--------------------------------- CHAINS -------------------------------------
#************ SCD #Stay-Change-Drop
# 2-chain
def twoChain_scd(features):
two_chain_scd = []
for ind,step in enumerate(matching[:-1]):
per_step = []
for inx,clr in enumerate(step):
for nodeid in clustered_nodes[ind][clr[0]]:
tmp = [nodeid]
for idfeatures in features[ind]:
if nodeid == idfeatures[0]:
tmp.extend(idfeatures[1:])
if nodeid in clustered_nodes[ind+1][clr[1]]:
tmp.append(0)#stay
#for idfeatures in features[ind+1]: remove second set of features
#if nodeid == idfeatures[0]:
#tmp.extend(idfeatures[1:])
'''for cl in matching[ind+1]:
if nodeid in clustered_nodes[ind+1][cl[0]]:
if nodeid in clustered_nodes[ind+2][cl[1]]:
tmp.append(0)#stay
break
elif nodeid in node_ids[ind+2]:
tmp.append(1)#move
break
else:
tmp.append(2)#drop
break'''
elif nodeid in node_ids[ind+1]:
tmp.append(1)#move
#for idfeatures in features[ind+1]:
#if nodeid == idfeatures[0]:
#tmp.extend(idfeatures[1:])
#for cl in matching[ind+1]:
#if nodeid in clustered_nodes[ind+1][cl[0]]:
#if nodeid in clustered_nodes[ind+2][cl[1]]:
#tmp.append(0)#stay
# break
#elif nodeid in node_ids[ind+2]:
# tmp.append(1)#move
# break
# else:
# tmp.append(2)#drop
# break
else:
# tmp.extend([-1]*(len(features[0][0][1:])+1)) remove extend vasia
tmp.append(2)#drop
per_step.append(tmp)
two_chain_scd.append(per_step)
return(two_chain_scd)
def chains_scd(prev_chain_scd, features, a):
curr_chain_scd = copy.deepcopy(prev_chain_scd[:-1])
for ind,step in enumerate(curr_chain_scd):
for row in step:
if row[-1] == 0 or row[-1] == 1:
for idfeatures in features[ind+2+a]:
if row[0] == idfeatures[0]:
row.extend(idfeatures[1:])
for cl in matching[ind+2+a]:
if row[0] in clustered_nodes[ind+2+a][cl[0]]:
if row[0] in clustered_nodes[ind+3+a][cl[1]]:
row.append(0)#stay
break
elif row[0] in node_ids[ind+3+a]:
row.append(1)#move
break
else:
row.append(2)#drop
break
else:
row[-1:-1] = [-1]*(len(features[0][0][1:])+1)#add -1*(#feats + ev)
return(curr_chain_scd)
# ----------------------------------------------------------------------------
#************ SL
def chains_sl(chainsSCD): #Stay-Leave
chainsSL = copy.deepcopy(chainsSCD)
for row in chainsSL:
if row[-1] == 2:
row[-1] = 1
return(chainsSL)
# ----------------------------------------------------------------------------
#************ SC #Stay-Change
def chains_sc(chainsSCD):
chainsSC = []
for row in chainsSCD:
if row[-1] != 2:
chainsSC.append(row)
return(chainsSC)
# ----------------------------------------------------------------------------
def per_chain_all_chains_scd(feats):
two_chain_scd = twoChain_scd(feats)
three_chain_scd = chains_scd(two_chain_scd, feats, 0)
four_chain_scd = chains_scd(three_chain_scd, feats, 1)
five_chain_scd = chains_scd(four_chain_scd, feats, 2)
six_chain_scd = chains_scd(five_chain_scd, feats, 3)
seven_chain_scd = chains_scd(six_chain_scd, feats, 4)
eight_chain_scd = chains_scd(seven_chain_scd, feats, 5)
nine_chain_scd = chains_scd(eight_chain_scd, feats, 6)
two_chain_scd = [row for s in two_chain_scd for row in s]#flat
three_chain_scd = [row for s in three_chain_scd for row in s]#flat
four_chain_scd = [row for s in four_chain_scd for row in s]#flat
five_chain_scd = [row for s in five_chain_scd for row in s]#flat
six_chain_scd = [row for s in six_chain_scd for row in s]#flat
seven_chain_scd = [row for s in seven_chain_scd for row in s]#flat
eight_chain_scd = [row for s in eight_chain_scd for row in s]#flat
nine_chain_scd = [row for s in nine_chain_scd for row in s]#flat
# merge chains
all_chains_scd = []
all_chains_scd.append(two_chain_scd)
all_chains_scd.append(three_chain_scd)
all_chains_scd.append(four_chain_scd)
all_chains_scd.append(five_chain_scd)
all_chains_scd.append(six_chain_scd)
all_chains_scd.append(seven_chain_scd)
all_chains_scd.append(eight_chain_scd)
all_chains_scd.append(nine_chain_scd)
all_chains_scd = [row for chain in all_chains_scd for row in chain]
return(two_chain_scd, three_chain_scd, four_chain_scd, five_chain_scd, \
six_chain_scd, seven_chain_scd, eight_chain_scd, nine_chain_scd, \
all_chains_scd)
# ----------------------------------------------------------------------------
# CHAINS ----------------------
# ComE
# clr
two_chain_ComE_clr_scd, three_chain_ComE_clr_scd, four_chain_ComE_clr_scd, \
five_chain_ComE_clr_scd, six_chain_ComE_clr_scd, seven_chain_ComE_clr_scd, \
eight_chain_ComE_clr_scd, nine_chain_ComE_clr_scd, \
chains_ComE_clr_scd = per_chain_all_chains_scd(id_ComE_feats_clr)
# per chain
two_chain_ComE_clr_sl = chains_sl(two_chain_ComE_clr_scd)
two_chain_ComE_clr_sc = chains_sc(two_chain_ComE_clr_scd)
three_chain_ComE_clr_sl = chains_sl(three_chain_ComE_clr_scd)
three_chain_ComE_clr_sc = chains_sc(three_chain_ComE_clr_scd)
four_chain_ComE_clr_sl = chains_sl(four_chain_ComE_clr_scd)
four_chain_ComE_clr_sc = chains_sc(four_chain_ComE_clr_scd)
five_chain_ComE_clr_sl = chains_sl(five_chain_ComE_clr_scd)
five_chain_ComE_clr_sc = chains_sc(five_chain_ComE_clr_scd)
six_chain_ComE_clr_sl = chains_sl(six_chain_ComE_clr_scd)
six_chain_ComE_clr_sc = chains_sc(six_chain_ComE_clr_scd)
seven_chain_ComE_clr_sl = chains_sl(seven_chain_ComE_clr_scd)
seven_chain_ComE_clr_sc = chains_sc(seven_chain_ComE_clr_scd)
eight_chain_ComE_clr_sl = chains_sl(eight_chain_ComE_clr_scd)
eight_chain_ComE_clr_sc = chains_sc(eight_chain_ComE_clr_scd)
nine_chain_ComE_clr_sl = chains_sl(nine_chain_ComE_clr_scd)
nine_chain_ComE_clr_sc = chains_sc(nine_chain_ComE_clr_scd)
# SL
chains_ComE_clr_sl = chains_sl(chains_ComE_clr_scd)
# SC
chains_ComE_clr_sc = chains_sc(chains_ComE_clr_scd)
# out
two_chain_ComE_out_scd, three_chain_ComE_out_scd, four_chain_ComE_out_scd, \
five_chain_ComE_out_scd, six_chain_ComE_out_scd, seven_chain_ComE_out_scd, \
eight_chain_ComE_out_scd, nine_chain_ComE_out_scd, \
chains_ComE_out_scd = per_chain_all_chains_scd(id_ComE_feats_out)
# per chain
two_chain_ComE_out_sl = chains_sl(two_chain_ComE_out_scd)
two_chain_ComE_out_sc = chains_sc(two_chain_ComE_out_scd)
three_chain_ComE_out_sl = chains_sl(three_chain_ComE_out_scd)
three_chain_ComE_out_sc = chains_sc(three_chain_ComE_out_scd)
four_chain_ComE_out_sl = chains_sl(four_chain_ComE_out_scd)
four_chain_ComE_out_sc = chains_sc(four_chain_ComE_out_scd)
five_chain_ComE_out_sl = chains_sl(five_chain_ComE_out_scd)
five_chain_ComE_out_sc = chains_sc(five_chain_ComE_out_scd)
six_chain_ComE_out_sl = chains_sl(six_chain_ComE_out_scd)
six_chain_ComE_out_sc = chains_sc(six_chain_ComE_out_scd)
seven_chain_ComE_out_sl = chains_sl(seven_chain_ComE_out_scd)
seven_chain_ComE_out_sc = chains_sc(seven_chain_ComE_out_scd)
eight_chain_ComE_out_sl = chains_sl(eight_chain_ComE_out_scd)
eight_chain_ComE_out_sc = chains_sc(eight_chain_ComE_out_scd)
nine_chain_ComE_out_sl = chains_sl(nine_chain_ComE_out_scd)
nine_chain_ComE_out_sc = chains_sc(nine_chain_ComE_out_scd)
# SL
chains_ComE_out_sl = chains_sl(chains_ComE_out_scd)
# SC
chains_ComE_out_sc = chains_sc(chains_ComE_out_scd)
# clrout
two_chain_ComE_clrout_scd, three_chain_ComE_clrout_scd, four_chain_ComE_clrout_scd, \
five_chain_ComE_clrout_scd, six_chain_ComE_clrout_scd, seven_chain_ComE_clrout_scd, \
eight_chain_ComE_clrout_scd, nine_chain_ComE_clrout_scd, \
chains_ComE_clrout_scd = per_chain_all_chains_scd(id_ComE_feats_clrout)
# per chain
two_chain_ComE_clrout_sl = chains_sl(two_chain_ComE_clrout_scd)
two_chain_ComE_clrout_sc = chains_sc(two_chain_ComE_clrout_scd)
three_chain_ComE_clrout_sl = chains_sl(three_chain_ComE_clrout_scd)
three_chain_ComE_clrout_sc = chains_sc(three_chain_ComE_clrout_scd)
four_chain_ComE_clrout_sl = chains_sl(four_chain_ComE_clrout_scd)
four_chain_ComE_clrout_sc = chains_sc(four_chain_ComE_clrout_scd)
five_chain_ComE_clrout_sl = chains_sl(five_chain_ComE_clrout_scd)
five_chain_ComE_clrout_sc = chains_sc(five_chain_ComE_clrout_scd)
six_chain_ComE_clrout_sl = chains_sl(six_chain_ComE_clrout_scd)
six_chain_ComE_clrout_sc = chains_sc(six_chain_ComE_clrout_scd)
seven_chain_ComE_clrout_sl = chains_sl(seven_chain_ComE_clrout_scd)
seven_chain_ComE_clrout_sc = chains_sc(seven_chain_ComE_clrout_scd)
eight_chain_ComE_clrout_sl = chains_sl(eight_chain_ComE_clrout_scd)
eight_chain_ComE_clrout_sc = chains_sc(eight_chain_ComE_clrout_scd)
nine_chain_ComE_clrout_sl = chains_sl(nine_chain_ComE_clrout_scd)
nine_chain_ComE_clrout_sc = chains_sc(nine_chain_ComE_clrout_scd)
# SL
chains_ComE_clrout_sl = chains_sl(chains_ComE_clrout_scd)
# SC
chains_ComE_clrout_sc = chains_sc(chains_ComE_clrout_scd)
# ----------------------------------------------------------------------------
# Classic
#clr
# SCD
two_chain_classic_clr_scd, three_chain_classic_clr_scd, four_chain_classic_clr_scd, \
five_chain_classic_clr_scd, six_chain_classic_clr_scd, seven_chain_classic_clr_scd, \
eight_chain_classic_clr_scd, nine_chain_classic_clr_scd, \
chains_classic_clr_scd = per_chain_all_chains_scd(id_classic_clr)
# per chain
two_chain_classic_clr_sl = chains_sl(two_chain_classic_clr_scd)
two_chain_classic_clr_sc = chains_sc(two_chain_classic_clr_scd)
three_chain_classic_clr_sl = chains_sl(three_chain_classic_clr_scd)
three_chain_classic_clr_sc = chains_sc(three_chain_classic_clr_scd)
four_chain_classic_clr_sl = chains_sl(four_chain_classic_clr_scd)
four_chain_classic_clr_sc = chains_sc(four_chain_classic_clr_scd)
five_chain_classic_clr_sl = chains_sl(five_chain_classic_clr_scd)
five_chain_classic_clr_sc = chains_sc(five_chain_classic_clr_scd)
six_chain_classic_clr_sl = chains_sl(six_chain_classic_clr_scd)
six_chain_classic_clr_sc = chains_sc(six_chain_classic_clr_scd)
seven_chain_classic_clr_sl = chains_sl(seven_chain_classic_clr_scd)
seven_chain_classic_clr_sc = chains_sc(seven_chain_classic_clr_scd)
eight_chain_classic_clr_sl = chains_sl(eight_chain_classic_clr_scd)
eight_chain_classic_clr_sc = chains_sc(eight_chain_classic_clr_scd)
nine_chain_classic_clr_sl = chains_sl(nine_chain_classic_clr_scd)
nine_chain_classic_clr_sc = chains_sc(nine_chain_classic_clr_scd)
# SL
chains_classic_clr_sl = chains_sl(chains_classic_clr_scd)
# SC
chains_classic_clr_sc = chains_sc(chains_classic_clr_scd)
#gbl
# SCD
two_chain_classic_gbl_scd, three_chain_classic_gbl_scd, four_chain_classic_gbl_scd, \
five_chain_classic_gbl_scd, six_chain_classic_gbl_scd, seven_chain_classic_gbl_scd, \
eight_chain_classic_gbl_scd, nine_chain_classic_gbl_scd, \
chains_classic_gbl_scd = per_chain_all_chains_scd(id_classic_gbl)
# per chain
two_chain_classic_gbl_sl = chains_sl(two_chain_classic_gbl_scd)
two_chain_classic_gbl_sc = chains_sc(two_chain_classic_gbl_scd)
three_chain_classic_gbl_sl = chains_sl(three_chain_classic_gbl_scd)
three_chain_classic_gbl_sc = chains_sc(three_chain_classic_gbl_scd)
four_chain_classic_gbl_sl = chains_sl(four_chain_classic_gbl_scd)
four_chain_classic_gbl_sc = chains_sc(four_chain_classic_gbl_scd)
five_chain_classic_gbl_sl = chains_sl(five_chain_classic_gbl_scd)
five_chain_classic_gbl_sc = chains_sc(five_chain_classic_gbl_scd)
six_chain_classic_gbl_sl = chains_sl(six_chain_classic_gbl_scd)
six_chain_classic_gbl_sc = chains_sc(six_chain_classic_gbl_scd)
seven_chain_classic_gbl_sl = chains_sl(seven_chain_classic_gbl_scd)
seven_chain_classic_gbl_sc = chains_sc(seven_chain_classic_gbl_scd)
eight_chain_classic_gbl_sl = chains_sl(eight_chain_classic_gbl_scd)
eight_chain_classic_gbl_sc = chains_sc(eight_chain_classic_gbl_scd)
nine_chain_classic_gbl_sl = chains_sl(nine_chain_classic_gbl_scd)
nine_chain_classic_gbl_sc = chains_sc(nine_chain_classic_gbl_scd)
# SL
chains_classic_gbl_sl = chains_sl(chains_classic_gbl_scd)
# SC
chains_classic_gbl_sc = chains_sc(chains_classic_gbl_scd)
#all
# SCD
two_chain_classic_all_scd, three_chain_classic_all_scd, four_chain_classic_all_scd, \
five_chain_classic_all_scd, six_chain_classic_all_scd, seven_chain_classic_all_scd, \
eight_chain_classic_all_scd, nine_chain_classic_all_scd, \
chains_classic_all_scd = per_chain_all_chains_scd(id_classic_all)
# per chain
two_chain_classic_all_sl = chains_sl(two_chain_classic_all_scd)
two_chain_classic_all_sc = chains_sc(two_chain_classic_all_scd)
three_chain_classic_all_sl = chains_sl(three_chain_classic_all_scd)
three_chain_classic_all_sc = chains_sc(three_chain_classic_all_scd)
four_chain_classic_all_sl = chains_sl(four_chain_classic_all_scd)
four_chain_classic_all_sc = chains_sc(four_chain_classic_all_scd)
five_chain_classic_all_sl = chains_sl(five_chain_classic_all_scd)
five_chain_classic_all_sc = chains_sc(five_chain_classic_all_scd)
six_chain_classic_all_sl = chains_sl(six_chain_classic_all_scd)
six_chain_classic_all_sc = chains_sc(six_chain_classic_all_scd)
seven_chain_classic_all_sl = chains_sl(seven_chain_classic_all_scd)
seven_chain_classic_all_sc = chains_sc(seven_chain_classic_all_scd)
eight_chain_classic_all_sl = chains_sl(eight_chain_classic_all_scd)
eight_chain_classic_all_sc = chains_sc(eight_chain_classic_all_scd)
nine_chain_classic_all_sl = chains_sl(nine_chain_classic_all_scd)
nine_chain_classic_all_sc = chains_sc(nine_chain_classic_all_scd)
# SL
chains_classic_all_sl = chains_sl(chains_classic_all_scd)
# SC
chains_classic_all_sc = chains_sc(chains_classic_all_scd)
#RNN model
def create_RNN(hidden_units, dense_units, input_shape, activation):
model=Sequential()
model.add(LSTM(hidden_units,input_shape=input_shape))
model.add(Dense(units=dense_units,activation=activation))
model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy'])
model.summary()
return model
# stratified kfold
def Classification(chain):
#print("chain1 = ",len(chain),chain[0])
chain = shuffle(np.array(chain))
print("chain2 = ",chain.shape)
X = [i[1:-1] for i in chain.tolist()]
Y = [i[-1] for i in chain.tolist()]
# padding
longest = len(max(X,key=len))
print(longest)
for row in X:
while len(row)<longest:
row.append(-99)
#######
X = np.array(X)
Y = np.array(Y)
print('Y_dataset:', Counter(Y))
skf = StratifiedKFold(n_splits=5)
fold = 0
k=0
cvscores = []
for train_index, test_index in skf.split(X, Y):
X_train, X_test = X[train_index], X[test_index]
y_train, y_test = Y[train_index], Y[test_index]
y_train_cnt = pd.DataFrame([Counter(y_train)]).transpose()
print(y_train_cnt)
y_train_cnt.sort_index(inplace=True)
print('y_train:', y_train_cnt)
# print("X",X_train.shape,X_train[0])
X_train_3d = X_train.reshape((X_train.shape[0], 4, 1))
X_test_3d = X_test.reshape((X_test.shape[0], 4, 1))
# print(X_test_3d)
rnn_model = create_RNN(100,2,input_shape=(4,1),activation='sigmoid')
rnn_model.fit(X_train_3d, y_train, epochs=50, batch_size=5,verbose=2)
#test_pred = rnn_model.predict(X_test_3d)
scores = rnn_model.evaluate(X_test_3d, y_test, verbose=0)
print("score",scores)
exit()
print("%s: %.2f%%" % (rnn_model.metrics_names[1], scores[1]*100))
cvscores.append(scores[1] * 100)
print("%.2f%% (+/- %.2f%%)" % (np.mean(cvscores), np.std(cvscores)))
# Classic features
# clr - 1 chain
with open('results_details.csv','a') as fd:
fd.write('two_chain_classic_clr_sl'+'\n')
with open('results.csv','a') as fd:
fd.write('two_chain_classic_clr_sl'+'\n')
Classification(two_chain_classic_clr_sl)
|