Spaces:
Running
Running
File size: 7,370 Bytes
d0269f7 44efa53 d0269f7 1dfa4f0 4f58d50 afc843a 06c102b 1f87132 1dfa4f0 06c102b 5af1ec5 06c102b 8c362bb c52b92b 06c102b 8c362bb 4f58d50 b27f379 4b2f4dc c9095ee 4f58d50 69d1f9e 14668be f49b111 69d1f9e 142cffe 69d1f9e 14668be 6b6beca c9095ee 49eecc5 c9095ee 49eecc5 c9095ee 30a5d87 c9095ee 49eecc5 c9095ee 49eecc5 c9095ee 30a5d87 c9095ee 69d1f9e 30a5d87 14668be 1dfa4f0 14668be ed37da3 68a657a 14668be 6b6beca 14668be 6b6beca 68a657a b026d86 68a657a 6b6beca 68a657a 14668be 68a657a 14668be 68a657a 14668be 6b6beca 3bd61fe 6b6beca 68a657a 14668be b026d86 ed37da3 f7a9c86 b026d86 ed37da3 68a657a f7a9c86 68a657a 14668be 1dfa4f0 6b6beca 14668be |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 |
import os
import json
import shutil
import gradio as gr
import random
from huggingface_hub import Repository,HfApi
from huggingface_hub import snapshot_download
# from datasets import load_dataset
from datasets import config
hf_token = os.environ['hf_token'] # 确保环境变量中有你的令牌
local_dir = "VBench_sampled_video" # 本地文件夹路径
# dataset = load_dataset("Vchitect/VBench_sampled_video")
# print(os.listdir("~/.cache/huggingface/datasets/Vchitect___VBench_sampled_video/"))
# root = "~/.cache/huggingface/datasets/Vchitect___VBench_sampled_video/"
# print(config.HF_DATASETS_CACHE)
# root = config.HF_DATASETS_CACHE
# print(root)
def print_directory_contents(path, indent=0):
# 打印当前目录的内容
try:
for item in os.listdir(path):
item_path = os.path.join(path, item)
print(' ' * indent + item) # 使用缩进打印文件或文件夹
if os.path.isdir(item_path): # 如果是目录,则递归调用
print_directory_contents(item_path, indent + 1)
except PermissionError:
print(' ' * indent + "[权限错误,无法访问该目录]")
# 拉取数据集
os.makedirs(local_dir, exist_ok=True)
hf_api = HfApi(endpoint="https://huggingface.co", token=hf_token)
hf_api = HfApi(token=hf_token)
repo_id = "Vchitect/VBench_sampled_video"
model_names=[]
for i in hf_api.list_repo_tree('Vchitect/VBench_sampled_video',repo_type='dataset'):
model_name = i.path
if '.git' not in model_name and '.md' not in model_name:
model_names.append(model_name)
with open("videos_by_dimension.json") as f:
dimension = json.load(f)['videos_by_dimension']
for key in dimension:
new_item = []
for item in dimension[key]:
new_item.append(os.path.basename(item))
dimension[key] = new_item
# with open("all_videos.json") as f:
# all_videos = json.load(f)
types = ['appearance_style', 'color', 'temporal_style', 'spatial_relationship', 'temporal_flickering', 'scene', 'multiple_objects', 'object_class', 'human_action', 'overall_consistency', 'subject_consistency']
def get_video_path_local(model_name, type, prompt):
if 'Show-1' in model_name:
video_path_subfolder = os.path.join(model_name, type, 'super2')
elif 'videocrafter-1' in model_name:
video_path_subfolder = os.path.join(model_name, type, '1024x576')
else:
video_path_subfolder = os.path.join(model_name, type)
try:
return hf_api.hf_hub_download(
repo_id = repo_id,
filename = prompt,
subfolder = video_path_subfolder,
repo_type = "dataset",
local_dir = local_dir
)
except Exception as e:
print(f"[PATH]{video_path_subfolder}/{prompt} NOT in hf repo, try {model_name}",e)
video_path_subfolder = model_name
try:
return hf_api.hf_hub_download(
repo_id = repo_id,
filename = prompt,
subfolder = video_path_subfolder,
repo_type = 'dataset',
local_dir = local_dir
)
except Exception as e:
print(f"[PATH]{video_path_subfolder}/{prompt} NOT in hf repo, try {model_name}",e)
print(e)
# video_path = dataset['train'][random_index]['video_path']
print('error:', model_name, type, prompt)
return None
def get_random_video():
# 随机选择一个索引
random_index = random.randint(0, len(types) - 1)
type = types[random_index]
# 随机选择一个Prompt
random_index = random.randint(0, len(dimension[type]) - 1)
prompt = dimension[type][random_index]
prompt = os.path.basename(prompt)
# 随机选择两个不同的模型名称
random_model_names = random.sample(model_names, 2)
model_name_1, model_name_2 = random_model_names
video_path1 = get_video_path_local(model_name_1, type, prompt)
video_path2 = get_video_path_local(model_name_2, type, prompt)
return video_path1, video_path2, model_name_1, model_name_2, type, prompt
def update_prompt_options(type, value=None):
if value:
return gr.update(choices=dimension[type], value=value if dimension[type] else None)
else:
return gr.update(choices=dimension[type], value=dimension[type][0] if dimension[type] else None)
def display_videos(type, prompt, model_name_1, model_name_2):
video_path1 = get_video_path_local(model_name_1, type, prompt)
video_path2 = get_video_path_local(model_name_2, type, prompt)
return video_path1, video_path2
def record_user_feedback_a(model_name1, model_name2, type, prompt):
# 0 means model A better, 1 means model B better
with open("user_feedback.csv",'a') as f:
f.write(f"{model_name1}\t{model_name2}\t{type}\t{prompt}\t{0}\n")
def record_user_feedback_b(model_name1, model_name2, type, prompt):
# 0 means model A better, 1 means model B better
with open("user_feedback.csv",'a') as f:
f.write(f"{model_name1}\t{model_name2}\t{type}\t{prompt}\t{1}\n")
with gr.Blocks() as interface:
gr.Markdown("# VBench Video Arena")
gr.Markdown("""
**Random 2 videos** for randomly picking two models to compare random with the same dimension and prompt
**Play Selection** is used for the user to select the model, dimension, prompt in the drop-down box, and display them
If you are interested, you can also leave your comments.""")
type_output = gr.Dropdown(label="Type", choices=types, value=types[0])
prompt_output = gr.Dropdown(label="Prompt", choices=dimension[types[0]], value=dimension[types[0]][0])
prompt_placeholder = gr.State()
with gr.Row():
random_button = gr.Button("🎲 Random 2 videos")
display_button = gr.Button("🎇 Play Selection")
with gr.Row():
with gr.Column():
model_name_1_output = gr.Dropdown(label="Model Name 1", choices=model_names, value=model_names[0])
video_output_1 = gr.Video(label="Video 1")
with gr.Column():
model_name_2_output = gr.Dropdown(label="Model Name 2", choices=model_names, value=model_names[1])
video_output_2 = gr.Video(label="Video 2")
with gr.Row():
feed0 = gr.Button("👈 Model A is better")
feed1 = gr.Button("👉 Model B is better")
type_output.change(fn=update_prompt_options, inputs=[type_output], outputs=[prompt_output])
random_button.click(
fn=get_random_video,
outputs=[video_output_1, video_output_2,model_name_1_output, model_name_2_output, type_output, prompt_placeholder]
).then(fn=update_prompt_options,
inputs=[type_output],
outputs=[prompt_output]).then(fn=update_prompt_options,
inputs=[type_output,prompt_placeholder],
outputs=[prompt_output])
display_button.click(
fn=display_videos,
inputs=[type_output, prompt_output, model_name_1_output, model_name_2_output],
outputs=[video_output_1, video_output_2]
)
feed0.click(
fn = record_user_feedback_a,
inputs=[model_name_1_output, model_name_2_output, type_output, prompt_placeholder]
)
feed1.click(
fn = record_user_feedback_b,
inputs=[model_name_1_output, model_name_2_output, type_output, prompt_placeholder]
)
interface.launch() |