Spaces:
Runtime error
Runtime error
I2V
Browse files- app.py +128 -5
- constants.py +65 -0
app.py
CHANGED
|
@@ -74,6 +74,15 @@ def get_normalized_df(df):
|
|
| 74 |
normalize_df[column] = (normalize_df[column] - min_val) / (max_val - min_val)
|
| 75 |
return normalize_df
|
| 76 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 77 |
def calculate_selected_score(df, selected_columns):
|
| 78 |
# selected_score = df[selected_columns].sum(axis=1)
|
| 79 |
selected_QUALITY = [i for i in selected_columns if i in QUALITY_LIST]
|
|
@@ -91,6 +100,23 @@ def calculate_selected_score(df, selected_columns):
|
|
| 91 |
selected_score = (selected_quality_score * QUALITY_WEIGHT + selected_semantic_score * SEMANTIC_WEIGHT) / (QUALITY_WEIGHT + SEMANTIC_WEIGHT)
|
| 92 |
return selected_score.fillna(0.0)
|
| 93 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 94 |
def get_final_score(df, selected_columns):
|
| 95 |
normalize_df = get_normalized_df(df)
|
| 96 |
#final_score = normalize_df.drop('name', axis=1).sum(axis=1)
|
|
@@ -118,6 +144,34 @@ def get_final_score(df, selected_columns):
|
|
| 118 |
df.insert(1, 'Selected Score', selected_score)
|
| 119 |
return df
|
| 120 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 121 |
|
| 122 |
def get_final_score_quality(df, selected_columns):
|
| 123 |
normalize_df = get_normalized_df(df)
|
|
@@ -138,8 +192,8 @@ def get_final_score_quality(df, selected_columns):
|
|
| 138 |
return df
|
| 139 |
|
| 140 |
def get_baseline_df():
|
| 141 |
-
submission_repo = Repository(local_dir=SUBMISSION_NAME, clone_from=SUBMISSION_URL, use_auth_token=HF_TOKEN, repo_type="dataset")
|
| 142 |
-
submission_repo.git_pull()
|
| 143 |
df = pd.read_csv(CSV_DIR)
|
| 144 |
df = get_final_score(df, checkbox_group.value)
|
| 145 |
df = df.sort_values(by="Selected Score", ascending=False)
|
|
@@ -149,8 +203,8 @@ def get_baseline_df():
|
|
| 149 |
return df
|
| 150 |
|
| 151 |
def get_baseline_df_quality():
|
| 152 |
-
submission_repo = Repository(local_dir=SUBMISSION_NAME, clone_from=SUBMISSION_URL, use_auth_token=HF_TOKEN, repo_type="dataset")
|
| 153 |
-
submission_repo.git_pull()
|
| 154 |
df = pd.read_csv(QUALITY_DIR)
|
| 155 |
df = get_final_score_quality(df, checkbox_group_quality.value)
|
| 156 |
df = df.sort_values(by="Selected Score", ascending=False)
|
|
@@ -159,6 +213,17 @@ def get_baseline_df_quality():
|
|
| 159 |
df = convert_scores_to_percentage(df)
|
| 160 |
return df
|
| 161 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 162 |
def get_all_df(selected_columns, dir=CSV_DIR):
|
| 163 |
submission_repo = Repository(local_dir=SUBMISSION_NAME, clone_from=SUBMISSION_URL, use_auth_token=HF_TOKEN, repo_type="dataset")
|
| 164 |
submission_repo.git_pull()
|
|
@@ -175,6 +240,13 @@ def get_all_df_quality(selected_columns, dir=QUALITY_DIR):
|
|
| 175 |
df = df.sort_values(by="Selected Score", ascending=False)
|
| 176 |
return df
|
| 177 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 178 |
|
| 179 |
def convert_scores_to_percentage(df):
|
| 180 |
# 对DataFrame中的每一列(除了'name'列)进行操作
|
|
@@ -239,6 +311,28 @@ def on_filter_model_size_method_change_quality(selected_columns):
|
|
| 239 |
)
|
| 240 |
return filter_component#.value
|
| 241 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 242 |
|
| 243 |
block = gr.Blocks()
|
| 244 |
|
|
@@ -322,8 +416,37 @@ with block:
|
|
| 322 |
|
| 323 |
checkbox_group_quality.change(fn=on_filter_model_size_method_change_quality, inputs=[checkbox_group_quality], outputs=data_component_quality)
|
| 324 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 325 |
# table 2
|
| 326 |
-
with gr.TabItem("📝 About", elem_id="mvbench-tab-table", id=
|
| 327 |
gr.Markdown(LEADERBORAD_INFO, elem_classes="markdown-text")
|
| 328 |
|
| 329 |
# table 3
|
|
|
|
| 74 |
normalize_df[column] = (normalize_df[column] - min_val) / (max_val - min_val)
|
| 75 |
return normalize_df
|
| 76 |
|
| 77 |
+
def get_normalized_i2v_df(df):
|
| 78 |
+
normalize_df = df.copy().fillna(0.0)
|
| 79 |
+
for column in normalize_df.columns[1:]:
|
| 80 |
+
min_val = NORMALIZE_DIC_I2V[column]['Min']
|
| 81 |
+
max_val = NORMALIZE_DIC_I2V[column]['Max']
|
| 82 |
+
normalize_df[column] = (normalize_df[column] - min_val) / (max_val - min_val)
|
| 83 |
+
return normalize_df
|
| 84 |
+
|
| 85 |
+
|
| 86 |
def calculate_selected_score(df, selected_columns):
|
| 87 |
# selected_score = df[selected_columns].sum(axis=1)
|
| 88 |
selected_QUALITY = [i for i in selected_columns if i in QUALITY_LIST]
|
|
|
|
| 100 |
selected_score = (selected_quality_score * QUALITY_WEIGHT + selected_semantic_score * SEMANTIC_WEIGHT) / (QUALITY_WEIGHT + SEMANTIC_WEIGHT)
|
| 101 |
return selected_score.fillna(0.0)
|
| 102 |
|
| 103 |
+
def calculate_selected_score_i2v(df, selected_columns):
|
| 104 |
+
# selected_score = df[selected_columns].sum(axis=1)
|
| 105 |
+
selected_QUALITY = [i for i in selected_columns if i in I2V_QUALITY_LIST]
|
| 106 |
+
selected_I2V = [i for i in selected_columns if i in I2V_LIST]
|
| 107 |
+
selected_quality_score = df[selected_QUALITY].sum(axis=1)/sum([DIM_WEIGHT_I2V[i] for i in selected_QUALITY])
|
| 108 |
+
selected_i2v_score = df[selected_I2V].sum(axis=1)/sum([DIM_WEIGHT_I2V[i] for i in selected_I2V ])
|
| 109 |
+
if selected_quality_score.isna().any().any() and selected_i2v_score.isna().any().any():
|
| 110 |
+
selected_score = (selected_quality_score * I2V_QUALITY_WEIGHT + selected_i2v_score * I2V_WEIGHT) / (I2V_QUALITY_WEIGHT + I2V_WEIGHT)
|
| 111 |
+
return selected_score.fillna(0.0)
|
| 112 |
+
if selected_quality_score.isna().any().any():
|
| 113 |
+
return selected_i2v_score
|
| 114 |
+
if selected_i2v_score.isna().any().any():
|
| 115 |
+
return selected_quality_score
|
| 116 |
+
print(selected_i2v_score,selected_quality_score )
|
| 117 |
+
selected_score = (selected_quality_score * I2V_QUALITY_WEIGHT + selected_i2v_score * I2V_WEIGHT) / (I2V_QUALITY_WEIGHT + I2V_WEIGHT)
|
| 118 |
+
return selected_score.fillna(0.0)
|
| 119 |
+
|
| 120 |
def get_final_score(df, selected_columns):
|
| 121 |
normalize_df = get_normalized_df(df)
|
| 122 |
#final_score = normalize_df.drop('name', axis=1).sum(axis=1)
|
|
|
|
| 144 |
df.insert(1, 'Selected Score', selected_score)
|
| 145 |
return df
|
| 146 |
|
| 147 |
+
def get_final_score_i2v(df, selected_columns):
|
| 148 |
+
normalize_df = get_normalized_i2v_df(df)
|
| 149 |
+
#final_score = normalize_df.drop('name', axis=1).sum(axis=1)
|
| 150 |
+
for name in normalize_df.drop('Model Name (clickable)', axis=1).drop('Video-Text Camera Motion', axis=1):
|
| 151 |
+
normalize_df[name] = normalize_df[name]*DIM_WEIGHT_I2V[name]
|
| 152 |
+
quality_score = normalize_df[I2V_QUALITY_LIST].sum(axis=1)/sum([DIM_WEIGHT_I2V[i] for i in I2V_QUALITY_LIST])
|
| 153 |
+
i2v_score = normalize_df[I2V_LIST].sum(axis=1)/sum([DIM_WEIGHT_I2V[i] for i in I2V_LIST ])
|
| 154 |
+
final_score = (quality_score * I2V_QUALITY_WEIGHT + i2v_score * I2V_WEIGHT) / (I2V_QUALITY_WEIGHT + I2V_WEIGHT)
|
| 155 |
+
if 'Total Score' in df:
|
| 156 |
+
df['Total Score'] = final_score
|
| 157 |
+
else:
|
| 158 |
+
df.insert(1, 'Total Score', final_score)
|
| 159 |
+
if 'I2V Score' in df:
|
| 160 |
+
df['I2V Score'] = i2v_score
|
| 161 |
+
else:
|
| 162 |
+
df.insert(2, 'I2V Score', i2v_score)
|
| 163 |
+
if 'Quality Score' in df:
|
| 164 |
+
df['Quality Score'] = quality_score
|
| 165 |
+
else:
|
| 166 |
+
df.insert(3, 'Quality Score', quality_score)
|
| 167 |
+
selected_score = calculate_selected_score(normalize_df, selected_columns)
|
| 168 |
+
if 'Selected Score' in df:
|
| 169 |
+
df['Selected Score'] = selected_score
|
| 170 |
+
else:
|
| 171 |
+
df.insert(1, 'Selected Score', selected_score)
|
| 172 |
+
return df
|
| 173 |
+
|
| 174 |
+
|
| 175 |
|
| 176 |
def get_final_score_quality(df, selected_columns):
|
| 177 |
normalize_df = get_normalized_df(df)
|
|
|
|
| 192 |
return df
|
| 193 |
|
| 194 |
def get_baseline_df():
|
| 195 |
+
# submission_repo = Repository(local_dir=SUBMISSION_NAME, clone_from=SUBMISSION_URL, use_auth_token=HF_TOKEN, repo_type="dataset")
|
| 196 |
+
# submission_repo.git_pull()
|
| 197 |
df = pd.read_csv(CSV_DIR)
|
| 198 |
df = get_final_score(df, checkbox_group.value)
|
| 199 |
df = df.sort_values(by="Selected Score", ascending=False)
|
|
|
|
| 203 |
return df
|
| 204 |
|
| 205 |
def get_baseline_df_quality():
|
| 206 |
+
# submission_repo = Repository(local_dir=SUBMISSION_NAME, clone_from=SUBMISSION_URL, use_auth_token=HF_TOKEN, repo_type="dataset")
|
| 207 |
+
# submission_repo.git_pull()
|
| 208 |
df = pd.read_csv(QUALITY_DIR)
|
| 209 |
df = get_final_score_quality(df, checkbox_group_quality.value)
|
| 210 |
df = df.sort_values(by="Selected Score", ascending=False)
|
|
|
|
| 213 |
df = convert_scores_to_percentage(df)
|
| 214 |
return df
|
| 215 |
|
| 216 |
+
def get_baseline_df_i2v():
|
| 217 |
+
# submission_repo = Repository(local_dir=SUBMISSION_NAME, clone_from=SUBMISSION_URL, use_auth_token=HF_TOKEN, repo_type="dataset")
|
| 218 |
+
# submission_repo.git_pull()
|
| 219 |
+
df = pd.read_csv(I2V_DIR)
|
| 220 |
+
df = get_final_score_i2v(df, checkbox_group_i2v.value)
|
| 221 |
+
df = df.sort_values(by="Selected Score", ascending=False)
|
| 222 |
+
present_columns = MODEL_INFO_TAB_I2V + checkbox_group_i2v.value
|
| 223 |
+
df = df[present_columns]
|
| 224 |
+
df = convert_scores_to_percentage(df)
|
| 225 |
+
return df
|
| 226 |
+
|
| 227 |
def get_all_df(selected_columns, dir=CSV_DIR):
|
| 228 |
submission_repo = Repository(local_dir=SUBMISSION_NAME, clone_from=SUBMISSION_URL, use_auth_token=HF_TOKEN, repo_type="dataset")
|
| 229 |
submission_repo.git_pull()
|
|
|
|
| 240 |
df = df.sort_values(by="Selected Score", ascending=False)
|
| 241 |
return df
|
| 242 |
|
| 243 |
+
def get_all_df_i2v(selected_columns, dir=I2V_DIR):
|
| 244 |
+
# submission_repo = Repository(local_dir=SUBMISSION_NAME, clone_from=SUBMISSION_URL, use_auth_token=HF_TOKEN, repo_type="dataset")
|
| 245 |
+
# submission_repo.git_pull()
|
| 246 |
+
df = pd.read_csv(dir)
|
| 247 |
+
df = get_final_score_i2v(df, selected_columns)
|
| 248 |
+
df = df.sort_values(by="Selected Score", ascending=False)
|
| 249 |
+
return df
|
| 250 |
|
| 251 |
def convert_scores_to_percentage(df):
|
| 252 |
# 对DataFrame中的每一列(除了'name'列)进行操作
|
|
|
|
| 311 |
)
|
| 312 |
return filter_component#.value
|
| 313 |
|
| 314 |
+
def on_filter_model_size_method_change_i2v(selected_columns):
|
| 315 |
+
|
| 316 |
+
updated_data = get_all_df_i2v(selected_columns, I2V_DIR)
|
| 317 |
+
selected_columns = [item for item in I2V_TAB if item in selected_columns]
|
| 318 |
+
present_columns = MODEL_INFO_TAB_I2V + selected_columns
|
| 319 |
+
updated_data = updated_data[present_columns]
|
| 320 |
+
updated_data = updated_data.sort_values(by="Selected Score", ascending=False)
|
| 321 |
+
updated_data = convert_scores_to_percentage(updated_data)
|
| 322 |
+
updated_headers = present_columns
|
| 323 |
+
update_datatype = [DATA_TITILE_TYPE[COLUMN_NAMES.index(x)] for x in updated_headers]
|
| 324 |
+
import ipdb
|
| 325 |
+
ipdb.set_trace()
|
| 326 |
+
# print(updated_data,present_columns,update_datatype)
|
| 327 |
+
filter_component = gr.components.Dataframe(
|
| 328 |
+
value=updated_data,
|
| 329 |
+
headers=updated_headers,
|
| 330 |
+
type="pandas",
|
| 331 |
+
datatype=update_datatype,
|
| 332 |
+
interactive=False,
|
| 333 |
+
visible=True,
|
| 334 |
+
)
|
| 335 |
+
return filter_component#.value
|
| 336 |
|
| 337 |
block = gr.Blocks()
|
| 338 |
|
|
|
|
| 416 |
|
| 417 |
checkbox_group_quality.change(fn=on_filter_model_size_method_change_quality, inputs=[checkbox_group_quality], outputs=data_component_quality)
|
| 418 |
|
| 419 |
+
with gr.TabItem("VBench-I2V", elem_id="vbench-tab-table", id=3):
|
| 420 |
+
with gr.Accordion("NOTE", open=False):
|
| 421 |
+
i2v_note_button = gr.Textbox(
|
| 422 |
+
value=I2V_CLAIM_TEXT,
|
| 423 |
+
label="",
|
| 424 |
+
elem_id="quality-button",
|
| 425 |
+
lines=3,
|
| 426 |
+
)
|
| 427 |
+
with gr.Row():
|
| 428 |
+
with gr.Column(scale=1.0):
|
| 429 |
+
# selection for column part:
|
| 430 |
+
checkbox_group_i2v = gr.CheckboxGroup(
|
| 431 |
+
choices=I2V_TAB,
|
| 432 |
+
value=I2V_TAB,
|
| 433 |
+
label="Evaluation Quality Dimension",
|
| 434 |
+
interactive=True,
|
| 435 |
+
)
|
| 436 |
+
|
| 437 |
+
data_component_i2v = gr.components.Dataframe(
|
| 438 |
+
value=get_baseline_df_i2v,
|
| 439 |
+
headers=COLUMN_NAMES_I2V,
|
| 440 |
+
type="pandas",
|
| 441 |
+
datatype=I2V_TITILE_TYPE,
|
| 442 |
+
interactive=False,
|
| 443 |
+
visible=True,
|
| 444 |
+
)
|
| 445 |
+
|
| 446 |
+
checkbox_group_i2v.change(fn=on_filter_model_size_method_change_i2v, inputs=[checkbox_group_i2v], outputs=data_component_i2v)
|
| 447 |
+
|
| 448 |
# table 2
|
| 449 |
+
with gr.TabItem("📝 About", elem_id="mvbench-tab-table", id=4):
|
| 450 |
gr.Markdown(LEADERBORAD_INFO, elem_classes="markdown-text")
|
| 451 |
|
| 452 |
# table 3
|
constants.py
CHANGED
|
@@ -14,6 +14,14 @@ MODEL_INFO_TAB_QUALITY = [
|
|
| 14 |
"Selected Score"
|
| 15 |
]
|
| 16 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 17 |
TASK_INFO = [
|
| 18 |
"subject consistency",
|
| 19 |
"background consistency",
|
|
@@ -71,6 +79,32 @@ QUALITY_TAB = [
|
|
| 71 |
"imaging quality",
|
| 72 |
"dynamic degree",]
|
| 73 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 74 |
DIM_WEIGHT = {
|
| 75 |
"subject consistency":1,
|
| 76 |
"background consistency":1,
|
|
@@ -90,18 +124,35 @@ DIM_WEIGHT = {
|
|
| 90 |
"overall consistency":1
|
| 91 |
}
|
| 92 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 93 |
SEMANTIC_WEIGHT = 1
|
| 94 |
QUALITY_WEIGHT = 4
|
|
|
|
|
|
|
| 95 |
|
| 96 |
DATA_TITILE_TYPE = ['markdown', 'number', 'number', 'number', 'number', 'number', 'number', 'number', 'number', 'number', 'number', 'number', 'number', 'number', 'number', 'number', 'number', 'number', 'number', 'number', 'number']
|
|
|
|
| 97 |
|
| 98 |
SUBMISSION_NAME = "vbench_leaderboard_submission"
|
| 99 |
SUBMISSION_URL = os.path.join("https://huggingface.co/datasets/Vchitect/", SUBMISSION_NAME)
|
| 100 |
CSV_DIR = "./vbench_leaderboard_submission/results.csv"
|
| 101 |
QUALITY_DIR = "./vbench_leaderboard_submission/quality.csv"
|
|
|
|
| 102 |
|
| 103 |
COLUMN_NAMES = MODEL_INFO + TASK_INFO
|
| 104 |
COLUMN_NAMES_QUALITY = MODEL_INFO_TAB_QUALITY + QUALITY_TAB
|
|
|
|
| 105 |
|
| 106 |
LEADERBORAD_INTRODUCTION = """# VBench Leaderboard
|
| 107 |
|
|
@@ -145,6 +196,8 @@ CITATION_BUTTON_TEXT = r"""@inproceedings{huang2023vbench,
|
|
| 145 |
|
| 146 |
QUALITY_CLAIM_TEXT = "We use all the videos on Sora website (https://openai.com/sora) for a preliminary evaluation, including the failure case videos Sora provided."
|
| 147 |
|
|
|
|
|
|
|
| 148 |
NORMALIZE_DIC = {
|
| 149 |
"subject consistency": {"Min": 0.1462, "Max": 1.0},
|
| 150 |
"background consistency": {"Min": 0.2615, "Max": 1.0},
|
|
@@ -162,4 +215,16 @@ NORMALIZE_DIC = {
|
|
| 162 |
"appearance style": {"Min": 0.0009, "Max": 0.2855},
|
| 163 |
"temporal style": {"Min": 0.0, "Max": 0.364},
|
| 164 |
"overall consistency": {"Min": 0.0, "Max": 0.364}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 165 |
}
|
|
|
|
| 14 |
"Selected Score"
|
| 15 |
]
|
| 16 |
|
| 17 |
+
MODEL_INFO_TAB_I2V = [
|
| 18 |
+
"Model Name (clickable)",
|
| 19 |
+
"Total Score",
|
| 20 |
+
"I2V Score",
|
| 21 |
+
"Quality Score",
|
| 22 |
+
"Selected Score"
|
| 23 |
+
]
|
| 24 |
+
|
| 25 |
TASK_INFO = [
|
| 26 |
"subject consistency",
|
| 27 |
"background consistency",
|
|
|
|
| 79 |
"imaging quality",
|
| 80 |
"dynamic degree",]
|
| 81 |
|
| 82 |
+
I2V_LIST = [
|
| 83 |
+
"Video-Image Subject Consistency",
|
| 84 |
+
"Video-Image Background Consistency",
|
| 85 |
+
]
|
| 86 |
+
|
| 87 |
+
I2V_QUALITY_LIST = [
|
| 88 |
+
"Subject Consistency",
|
| 89 |
+
"Background Consistency",
|
| 90 |
+
"Motion Smoothness",
|
| 91 |
+
"Dynamic Degree",
|
| 92 |
+
"Aesthetic Quality",
|
| 93 |
+
"Imaging Quality"
|
| 94 |
+
]
|
| 95 |
+
|
| 96 |
+
I2V_TAB = [
|
| 97 |
+
"Video-Text Camera Motion",
|
| 98 |
+
"Video-Image Subject Consistency",
|
| 99 |
+
"Video-Image Background Consistency",
|
| 100 |
+
"Subject Consistency",
|
| 101 |
+
"Background Consistency",
|
| 102 |
+
"Motion Smoothness",
|
| 103 |
+
"Dynamic Degree",
|
| 104 |
+
"Aesthetic Quality",
|
| 105 |
+
"Imaging Quality"
|
| 106 |
+
]
|
| 107 |
+
|
| 108 |
DIM_WEIGHT = {
|
| 109 |
"subject consistency":1,
|
| 110 |
"background consistency":1,
|
|
|
|
| 124 |
"overall consistency":1
|
| 125 |
}
|
| 126 |
|
| 127 |
+
DIM_WEIGHT_I2V = {
|
| 128 |
+
"Video-Text Camera Motion": 0.1,
|
| 129 |
+
"Video-Image Subject Consistency": 1,
|
| 130 |
+
"Video-Image Background Consistency": 1,
|
| 131 |
+
"Subject Consistency": 1,
|
| 132 |
+
"Background Consistency": 1,
|
| 133 |
+
"Motion Smoothness": 1,
|
| 134 |
+
"Dynamic Degree": 0.5,
|
| 135 |
+
"Aesthetic Quality": 1,
|
| 136 |
+
"Imaging Quality": 1
|
| 137 |
+
}
|
| 138 |
+
|
| 139 |
SEMANTIC_WEIGHT = 1
|
| 140 |
QUALITY_WEIGHT = 4
|
| 141 |
+
I2V_WEIGHT = 1.0
|
| 142 |
+
I2V_QUALITY_WEIGHT = 1.0
|
| 143 |
|
| 144 |
DATA_TITILE_TYPE = ['markdown', 'number', 'number', 'number', 'number', 'number', 'number', 'number', 'number', 'number', 'number', 'number', 'number', 'number', 'number', 'number', 'number', 'number', 'number', 'number', 'number']
|
| 145 |
+
I2V_TITILE_TYPE = ['markdown', 'number', 'number', 'number', 'number', 'number', 'number', 'number', 'number', 'number', 'number', 'number', 'number', 'number', 'number', 'number', 'number', 'number', 'number', 'number', 'number']
|
| 146 |
|
| 147 |
SUBMISSION_NAME = "vbench_leaderboard_submission"
|
| 148 |
SUBMISSION_URL = os.path.join("https://huggingface.co/datasets/Vchitect/", SUBMISSION_NAME)
|
| 149 |
CSV_DIR = "./vbench_leaderboard_submission/results.csv"
|
| 150 |
QUALITY_DIR = "./vbench_leaderboard_submission/quality.csv"
|
| 151 |
+
I2V_DIR = "./vbench_leaderboard_submission/i2v_results.csv"
|
| 152 |
|
| 153 |
COLUMN_NAMES = MODEL_INFO + TASK_INFO
|
| 154 |
COLUMN_NAMES_QUALITY = MODEL_INFO_TAB_QUALITY + QUALITY_TAB
|
| 155 |
+
COLUMN_NAMES_I2V = MODEL_INFO_TAB_I2V + I2V_TAB
|
| 156 |
|
| 157 |
LEADERBORAD_INTRODUCTION = """# VBench Leaderboard
|
| 158 |
|
|
|
|
| 196 |
|
| 197 |
QUALITY_CLAIM_TEXT = "We use all the videos on Sora website (https://openai.com/sora) for a preliminary evaluation, including the failure case videos Sora provided."
|
| 198 |
|
| 199 |
+
I2V_CLAIM_TEXT = "Since the open-sourced SVD models do not accept text input during the I2V stage, we are unable to evaluate its `camera motion` in terms of `video-text consistency`. The total score is calculated based on all dimensions except `camera motion`."
|
| 200 |
+
|
| 201 |
NORMALIZE_DIC = {
|
| 202 |
"subject consistency": {"Min": 0.1462, "Max": 1.0},
|
| 203 |
"background consistency": {"Min": 0.2615, "Max": 1.0},
|
|
|
|
| 215 |
"appearance style": {"Min": 0.0009, "Max": 0.2855},
|
| 216 |
"temporal style": {"Min": 0.0, "Max": 0.364},
|
| 217 |
"overall consistency": {"Min": 0.0, "Max": 0.364}
|
| 218 |
+
}
|
| 219 |
+
|
| 220 |
+
NORMALIZE_DIC_I2V = {
|
| 221 |
+
"Video-Text Camera Motion" :{"Min": 0.0, "Max":1.0 },
|
| 222 |
+
"Video-Image Subject Consistency":{"Min": 0.1462, "Max": 1.0},
|
| 223 |
+
"Video-Image Background Consistency":{"Min": 0.2615, "Max":1.0 },
|
| 224 |
+
"Subject Consistency":{"Min": 0.1462, "Max": 1.0},
|
| 225 |
+
"Background Consistency":{"Min": 0.2615, "Max": 1.0 },
|
| 226 |
+
"Motion Smoothness":{"Min": 0.7060, "Max": 0.9975},
|
| 227 |
+
"Dynamic Degree":{"Min": 0.0, "Max": 1.0},
|
| 228 |
+
"Aesthetic Quality":{"Min": 0.0, "Max": 1.0},
|
| 229 |
+
"Imaging Quality":{"Min": 0.0, "Max": 1.0}
|
| 230 |
}
|