Spaces:
Sleeping
Sleeping
File size: 12,495 Bytes
d5e5728 d61d482 d5e5728 d61d482 d5e5728 7e40ae4 d5e5728 d61d482 d5e5728 06a1915 a4cf41d 06a1915 a4cf41d 06a1915 a4cf41d 3886050 a4cf41d a75b957 935d7c6 152d6f3 06a1915 348ce33 152d6f3 49fdbe4 152d6f3 49fdbe4 348ce33 152d6f3 49fdbe4 3886050 348ce33 3886050 348ce33 3886050 152d6f3 348ce33 152d6f3 3886050 348ce33 152d6f3 49fdbe4 348ce33 49fdbe4 152d6f3 d5e5728 06a1915 d5e5728 06a1915 d5e5728 7e40ae4 4101eb7 d5e5728 d61d482 a1d7fd6 d61d482 348ce33 d61d482 06a1915 348ce33 d61d482 348ce33 d61d482 a1d7fd6 348ce33 d61d482 348ce33 8cc9c66 06a1915 d61d482 a1d7fd6 d61d482 8cc9c66 d61d482 7e40ae4 06a1915 d61d482 a1d7fd6 d61d482 a1d7fd6 d61d482 a1d7fd6 d61d482 a1d7fd6 d61d482 d5e5728 d61d482 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 |
import torch
import torch.nn as nn
import gradio as gr
from PIL import Image
import numpy as np
import math
import os
from threading import Event
import traceback
# Constants
IMG_SIZE = 128
TIMESTEPS = 500
NUM_CLASSES = 2
# Global Cancellation Flag
cancel_event = Event()
# Device Configuration
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# --- Model Definitions ---
class SinusoidalPositionEmbeddings(nn.Module):
def __init__(self, dim):
super().__init__()
self.dim = dim
half_dim = dim // 2
emb = math.log(10000) / (half_dim - 1)
emb = torch.exp(torch.arange(half_dim, dtype=torch.float32) * -emb)
self.register_buffer('embeddings', emb)
def forward(self, time):
embeddings = self.embeddings.to(time.device)
embeddings = time.float()[:, None] * embeddings[None, :]
return torch.cat([embeddings.sin(), embeddings.cos()], dim=-1)
class UNet(nn.Module):
def __init__(self, in_channels=3, out_channels=3, num_classes=2, time_dim=256):
super().__init__()
self.num_classes = num_classes
self.label_embedding = nn.Embedding(num_classes, time_dim)
self.time_mlp = nn.Sequential(
SinusoidalPositionEmbeddings(time_dim),
nn.Linear(time_dim, time_dim),
nn.ReLU(),
nn.Linear(time_dim, time_dim)
)
self.inc = self.double_conv(in_channels, 64)
self.down1 = self.down(64 + time_dim * 2, 128)
self.down2 = self.down(128 + time_dim * 2, 256)
self.down3 = self.down(256 + time_dim * 2, 512)
self.bottleneck = self.double_conv(512 + time_dim * 2, 1024)
self.up1 = nn.ConvTranspose2d(1024, 256, kernel_size=2, stride=2)
self.upconv1 = self.double_conv(256 + 256 + time_dim * 2, 256)
self.up2 = nn.ConvTranspose2d(256, 128, kernel_size=2, stride=2)
self.upconv2 = self.double_conv(128 + 128 + time_dim * 2, 128)
self.up3 = nn.ConvTranspose2d(128, 64, kernel_size=2, stride=2)
self.upconv3 = self.double_conv(64 + 64 + time_dim * 2, 64)
self.outc = nn.Conv2d(64, out_channels, kernel_size=1)
def double_conv(self, in_channels, out_channels):
return nn.Sequential(
nn.Conv2d(in_channels, out_channels, kernel_size=3, padding=1),
nn.ReLU(inplace=True),
nn.Conv2d(out_channels, out_channels, kernel_size=3, padding=1),
nn.ReLU(inplace=True)
)
def down(self, in_channels, out_channels):
return nn.Sequential(
nn.MaxPool2d(2),
self.double_conv(in_channels, out_channels)
)
def forward(self, x, labels, time):
label_indices = torch.argmax(labels, dim=1)
label_emb = self.label_embedding(label_indices)
t_emb = self.time_mlp(time)
combined_emb = torch.cat([t_emb, label_emb], dim=1)
combined_emb = combined_emb.unsqueeze(-1).unsqueeze(-1)
x1 = self.inc(x)
x1_cat = torch.cat([x1, combined_emb.repeat(1, 1, x1.shape[-2], x1.shape[-1])], dim=1)
x2 = self.down1(x1_cat)
x2_cat = torch.cat([x2, combined_emb.repeat(1, 1, x2.shape[-2], x2.shape[-1])], dim=1)
x3 = self.down2(x2_cat)
x3_cat = torch.cat([x3, combined_emb.repeat(1, 1, x3.shape[-2], x3.shape[-1])], dim=1)
x4 = self.down3(x3_cat)
x4_cat = torch.cat([x4, combined_emb.repeat(1, 1, x4.shape[-2], x4.shape[-1])], dim=1)
x5 = self.bottleneck(x4_cat)
x = self.up1(x5)
x = torch.cat([x, x3], dim=1)
x = torch.cat([x, combined_emb.repeat(1, 1, x.shape[-2], x.shape[-1])], dim=1)
x = self.upconv1(x)
x = self.up2(x)
x = torch.cat([x, x2], dim=1)
x = torch.cat([x, combined_emb.repeat(1, 1, x.shape[-2], x.shape[-1])], dim=1)
x = self.upconv2(x)
x = self.up3(x)
x = torch.cat([x, x1], dim=1)
x = torch.cat([x, combined_emb.repeat(1, 1, x.shape[-2], x.shape[-1])], dim=1)
x = self.upconv3(x)
output = self.outc(x)
return output
class DiffusionModel(nn.Module):
def __init__(self, model, timesteps=TIMESTEPS):
super().__init__()
self.model = model
self.timesteps = timesteps
beta_start = 0.0001
beta_end = 0.02
self.betas = torch.linspace(beta_start, beta_end, timesteps, dtype=torch.float32)
self.alphas = 1. - self.betas
self.register_buffer('alpha_bars', torch.cumprod(self.alphas, dim=0))
@torch.no_grad()
def sample(self, num_images, img_size, num_classes, labels, device, progress_callback=None):
"""Your exact sampling function from Colab"""
x_t = torch.randn(num_images, 3, img_size, img_size).to(device)
if labels.ndim == 1:
labels_one_hot = torch.zeros(num_images, num_classes).to(device)
labels_one_hot[torch.arange(num_images), labels] = 1
labels = labels_one_hot
else:
labels = labels.to(device)
for t in reversed(range(self.timesteps)):
if cancel_event.is_set():
return None
t_tensor = torch.full((num_images,), t, device=device, dtype=torch.float) # Pass time as float
predicted_noise = self.model(x_t, labels, t_tensor)
beta_t = self.betas[t].to(device)
alpha_t = self.alphas[t].to(device)
alpha_bar_t = self.alpha_bars[t].to(device)
mean = (1 / torch.sqrt(alpha_t)) * (x_t - (beta_t / torch.sqrt(1 - alpha_bar_t)) * predicted_noise)
variance = beta_t
if t > 0:
noise = torch.randn_like(x_t)
else:
noise = torch.zeros_like(x_t)
x_t = mean + torch.sqrt(variance) * noise
if progress_callback:
progress_callback((self.timesteps - t) / self.timesteps)
x_0 = torch.clamp(x_t, -1., 1.)
mean = torch.tensor([0.485, 0.456, 0.406]).view(1, 3, 1, 1).to(device)
std = torch.tensor([0.229, 0.224, 0.225]).view(1, 3, 1, 1).to(device)
x_0 = std * x_0 + mean
x_0 = torch.clamp(x_0, 0., 1.)
return x_0
def load_model(model_path, device):
unet = UNet(num_classes=NUM_CLASSES).to(device)
diffusion_model = DiffusionModel(unet).to(device)
if os.path.exists(model_path):
try:
checkpoint = torch.load(model_path, map_location=device)
if 'model_state_dict' in checkpoint:
state_dict = checkpoint['model_state_dict']
else:
state_dict = checkpoint
if all(k.startswith('model.') for k in state_dict.keys()):
state_dict = {k[6:]: v for k, v in state_dict.items()}
unet.load_state_dict(state_dict, strict=False)
print("Model loaded successfully")
test_input = torch.randn(1, 3, IMG_SIZE, IMG_SIZE).to(device)
test_labels = torch.zeros(1, NUM_CLASSES).to(device)
test_time = torch.tensor([1]).to(device)
output = unet(test_input, test_labels, test_time)
print(f"Model test output shape: {output.shape}")
except Exception as e:
traceback.print_exc()
raise ValueError(f"Error loading model: {str(e)}")
else:
raise FileNotFoundError(f"Model weights not found at {model_path}")
diffusion_model.eval()
return diffusion_model
MODEL_NAME = "model_weights.pth"
model_path = MODEL_NAME
print("Loading model...")
try:
loaded_model = load_model(model_path, device)
print("Model loaded successfully!")
except Exception as e:
print(f"Failed to load model: {e}")
print("Creating dummy model for demonstration")
loaded_model = DiffusionModel(UNet(num_classes=NUM_CLASSES)).to(device)
def cancel_generation():
cancel_event.set()
return "Generation cancelled"
def generate_images(label_str, num_images, progress=gr.Progress()):
global loaded_model
cancel_event.clear()
if num_images < 1 or num_images > 10:
raise gr.Error("Number of images must be between 1 and 10")
label_map = {'Pneumonia': 0, 'Pneumothorax': 1}
if label_str not in label_map:
raise gr.Error("Invalid condition selected")
labels = torch.zeros(num_images, NUM_CLASSES)
labels[:, label_map[label_str]] = 1
try:
def progress_callback(progress_val):
progress(progress_val, desc="Generating...")
if cancel_event.is_set():
raise gr.Error("Generation was cancelled by user")
with torch.no_grad():
images = loaded_model.sample(
num_images=num_images,
img_size=IMG_SIZE,
num_classes=NUM_CLASSES,
labels=labels,
device=device,
progress_callback=progress_callback
)
if images is None:
return None, None
processed_images = []
for img in images:
img_np = img.cpu().permute(1, 2, 0).numpy()
img_np = (img_np * 255).clip(0, 255).astype(np.uint8)
pil_img = Image.fromarray(img_np)
processed_images.append(pil_img)
if num_images == 1:
return processed_images[0], processed_images
else:
return None, processed_images
except Exception as e:
traceback.print_exc()
raise gr.Error(f"Generation failed: {str(e)}")
finally:
torch.cuda.empty_cache()
# Gradio UI
with gr.Blocks(theme=gr.themes.Soft(
primary_hue="violet",
neutral_hue="slate",
font=[gr.themes.GoogleFont("Poppins")],
text_size="md"
)) as demo:
gr.Markdown("""
<center>
<h1>Synthetic X-ray Generator</h1>
<p><em>Generate synthetic chest X-rays conditioned on pathology</em></p>
</center>
""")
with gr.Row():
with gr.Column(scale=1):
condition = gr.Dropdown(
["Pneumonia", "Pneumothorax"],
label="Select Condition",
value="Pneumonia",
interactive=True
)
num_images = gr.Slider(
1, 10, value=1, step=1,
label="Number of Images",
interactive=True
)
with gr.Row():
submit_btn = gr.Button("Generate", variant="primary")
cancel_btn = gr.Button("Cancel", variant="stop")
gr.Markdown("""
<div style="text-align: center; margin-top: 10px;">
<small>Note: Generation may take several seconds per image</small>
</div>
""")
with gr.Column(scale=2):
with gr.Tabs():
with gr.TabItem("Output", id="output_tab"):
single_image = gr.Image(
label="Generated X-ray",
height=400,
visible=True
)
gallery = gr.Gallery(
label="Generated X-rays",
columns=3,
height="auto",
object_fit="contain",
visible=False
)
def update_ui_based_on_count(num_images):
if num_images == 1:
return {
single_image: gr.update(visible=True),
gallery: gr.update(visible=False)
}
else:
return {
single_image: gr.update(visible=False),
gallery: gr.update(visible=True)
}
num_images.change(
fn=update_ui_based_on_count,
inputs=num_images,
outputs=[single_image, gallery]
)
submit_btn.click(
fn=generate_images,
inputs=[condition, num_images],
outputs=[single_image, gallery]
)
cancel_btn.click(
fn=cancel_generation,
outputs=None
)
demo.css = """
.gradio-container {
background: linear-gradient(135deg, #f5f7fa 0%, #e4e8f0 100%);
}
.gallery-container {
background-color: white !important;
}
"""
if __name__ == "__main__":
demo.launch(server_name="0.0.0.0", server_port=7860) |