File size: 12,495 Bytes
d5e5728
 
 
 
 
 
 
d61d482
 
d5e5728
d61d482
d5e5728
7e40ae4
d5e5728
 
d61d482
 
 
 
d5e5728
 
06a1915
a4cf41d
 
 
 
 
 
06a1915
 
a4cf41d
 
06a1915
 
 
a4cf41d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3886050
a4cf41d
 
 
a75b957
935d7c6
 
152d6f3
06a1915
348ce33
152d6f3
 
 
49fdbe4
 
 
152d6f3
49fdbe4
 
 
 
 
348ce33
152d6f3
 
 
 
49fdbe4
 
3886050
 
348ce33
 
 
3886050
 
348ce33
3886050
152d6f3
348ce33
152d6f3
 
3886050
348ce33
152d6f3
 
 
 
49fdbe4
 
348ce33
 
49fdbe4
 
 
 
152d6f3
d5e5728
06a1915
 
d5e5728
06a1915
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d5e5728
 
 
7e40ae4
4101eb7
 
 
 
 
 
 
 
 
 
d5e5728
d61d482
 
 
 
a1d7fd6
d61d482
 
 
 
 
 
 
 
 
 
348ce33
d61d482
 
 
 
 
 
 
 
 
06a1915
348ce33
 
 
 
 
 
d61d482
348ce33
d61d482
a1d7fd6
348ce33
d61d482
 
348ce33
8cc9c66
06a1915
d61d482
 
a1d7fd6
 
 
 
d61d482
 
 
8cc9c66
d61d482
 
7e40ae4
06a1915
d61d482
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a1d7fd6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d61d482
a1d7fd6
 
 
 
d61d482
 
 
a1d7fd6
d61d482
a1d7fd6
d61d482
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d5e5728
 
d61d482
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
import torch
import torch.nn as nn
import gradio as gr
from PIL import Image
import numpy as np
import math
import os
from threading import Event
import traceback

# Constants
IMG_SIZE = 128
TIMESTEPS = 500
NUM_CLASSES = 2

# Global Cancellation Flag
cancel_event = Event()

# Device Configuration
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

# --- Model Definitions ---
class SinusoidalPositionEmbeddings(nn.Module):
    def __init__(self, dim):
        super().__init__()
        self.dim = dim
        half_dim = dim // 2
        emb = math.log(10000) / (half_dim - 1)
        emb = torch.exp(torch.arange(half_dim, dtype=torch.float32) * -emb)
        self.register_buffer('embeddings', emb)

    def forward(self, time):
        embeddings = self.embeddings.to(time.device)
        embeddings = time.float()[:, None] * embeddings[None, :]
        return torch.cat([embeddings.sin(), embeddings.cos()], dim=-1)

class UNet(nn.Module):
    def __init__(self, in_channels=3, out_channels=3, num_classes=2, time_dim=256):
        super().__init__()
        self.num_classes = num_classes
        self.label_embedding = nn.Embedding(num_classes, time_dim)

        self.time_mlp = nn.Sequential(
            SinusoidalPositionEmbeddings(time_dim),
            nn.Linear(time_dim, time_dim),
            nn.ReLU(),
            nn.Linear(time_dim, time_dim)
        )

        self.inc = self.double_conv(in_channels, 64)
        self.down1 = self.down(64 + time_dim * 2, 128)
        self.down2 = self.down(128 + time_dim * 2, 256)
        self.down3 = self.down(256 + time_dim * 2, 512)

        self.bottleneck = self.double_conv(512 + time_dim * 2, 1024)

        self.up1 = nn.ConvTranspose2d(1024, 256, kernel_size=2, stride=2)
        self.upconv1 = self.double_conv(256 + 256 + time_dim * 2, 256)

        self.up2 = nn.ConvTranspose2d(256, 128, kernel_size=2, stride=2)
        self.upconv2 = self.double_conv(128 + 128 + time_dim * 2, 128)

        self.up3 = nn.ConvTranspose2d(128, 64, kernel_size=2, stride=2)
        self.upconv3 = self.double_conv(64 + 64 + time_dim * 2, 64)

        self.outc = nn.Conv2d(64, out_channels, kernel_size=1)

    def double_conv(self, in_channels, out_channels):
        return nn.Sequential(
            nn.Conv2d(in_channels, out_channels, kernel_size=3, padding=1),
            nn.ReLU(inplace=True),
            nn.Conv2d(out_channels, out_channels, kernel_size=3, padding=1),
            nn.ReLU(inplace=True)
        )

    def down(self, in_channels, out_channels):
        return nn.Sequential(
            nn.MaxPool2d(2),
            self.double_conv(in_channels, out_channels)
        )

    def forward(self, x, labels, time):
        label_indices = torch.argmax(labels, dim=1)
        label_emb = self.label_embedding(label_indices)
        t_emb = self.time_mlp(time)

        combined_emb = torch.cat([t_emb, label_emb], dim=1)
        combined_emb = combined_emb.unsqueeze(-1).unsqueeze(-1)

        x1 = self.inc(x)
        x1_cat = torch.cat([x1, combined_emb.repeat(1, 1, x1.shape[-2], x1.shape[-1])], dim=1)

        x2 = self.down1(x1_cat)
        x2_cat = torch.cat([x2, combined_emb.repeat(1, 1, x2.shape[-2], x2.shape[-1])], dim=1)

        x3 = self.down2(x2_cat)
        x3_cat = torch.cat([x3, combined_emb.repeat(1, 1, x3.shape[-2], x3.shape[-1])], dim=1)

        x4 = self.down3(x3_cat)
        x4_cat = torch.cat([x4, combined_emb.repeat(1, 1, x4.shape[-2], x4.shape[-1])], dim=1)

        x5 = self.bottleneck(x4_cat)

        x = self.up1(x5)
        x = torch.cat([x, x3], dim=1)
        x = torch.cat([x, combined_emb.repeat(1, 1, x.shape[-2], x.shape[-1])], dim=1)
        x = self.upconv1(x)

        x = self.up2(x)
        x = torch.cat([x, x2], dim=1)
        x = torch.cat([x, combined_emb.repeat(1, 1, x.shape[-2], x.shape[-1])], dim=1)
        x = self.upconv2(x)

        x = self.up3(x)
        x = torch.cat([x, x1], dim=1)
        x = torch.cat([x, combined_emb.repeat(1, 1, x.shape[-2], x.shape[-1])], dim=1)
        x = self.upconv3(x)

        output = self.outc(x)
        return output

class DiffusionModel(nn.Module):
    def __init__(self, model, timesteps=TIMESTEPS):
        super().__init__()
        self.model = model
        self.timesteps = timesteps
        
        beta_start = 0.0001
        beta_end = 0.02
        self.betas = torch.linspace(beta_start, beta_end, timesteps, dtype=torch.float32)
        self.alphas = 1. - self.betas
        self.register_buffer('alpha_bars', torch.cumprod(self.alphas, dim=0))

    @torch.no_grad()
    def sample(self, num_images, img_size, num_classes, labels, device, progress_callback=None):
        """Your exact sampling function from Colab"""
        x_t = torch.randn(num_images, 3, img_size, img_size).to(device)

        if labels.ndim == 1:
            labels_one_hot = torch.zeros(num_images, num_classes).to(device)
            labels_one_hot[torch.arange(num_images), labels] = 1
            labels = labels_one_hot
        else:
            labels = labels.to(device)

        for t in reversed(range(self.timesteps)):
            if cancel_event.is_set():
                return None
                
            t_tensor = torch.full((num_images,), t, device=device, dtype=torch.float)  # Pass time as float

            predicted_noise = self.model(x_t, labels, t_tensor)

            beta_t = self.betas[t].to(device)
            alpha_t = self.alphas[t].to(device)
            alpha_bar_t = self.alpha_bars[t].to(device)

            mean = (1 / torch.sqrt(alpha_t)) * (x_t - (beta_t / torch.sqrt(1 - alpha_bar_t)) * predicted_noise)
            variance = beta_t

            if t > 0:
                noise = torch.randn_like(x_t)
            else:
                noise = torch.zeros_like(x_t)

            x_t = mean + torch.sqrt(variance) * noise
            
            if progress_callback:
                progress_callback((self.timesteps - t) / self.timesteps)

        x_0 = torch.clamp(x_t, -1., 1.)

        mean = torch.tensor([0.485, 0.456, 0.406]).view(1, 3, 1, 1).to(device)
        std = torch.tensor([0.229, 0.224, 0.225]).view(1, 3, 1, 1).to(device)
        x_0 = std * x_0 + mean
        x_0 = torch.clamp(x_0, 0., 1.)

        return x_0

def load_model(model_path, device):
    unet = UNet(num_classes=NUM_CLASSES).to(device)
    diffusion_model = DiffusionModel(unet).to(device)
    
    if os.path.exists(model_path):
        try:
            checkpoint = torch.load(model_path, map_location=device)
            
            if 'model_state_dict' in checkpoint:
                state_dict = checkpoint['model_state_dict']
            else:
                state_dict = checkpoint
            
            if all(k.startswith('model.') for k in state_dict.keys()):
                state_dict = {k[6:]: v for k, v in state_dict.items()}
            
            unet.load_state_dict(state_dict, strict=False)
            print("Model loaded successfully")
            
            test_input = torch.randn(1, 3, IMG_SIZE, IMG_SIZE).to(device)
            test_labels = torch.zeros(1, NUM_CLASSES).to(device)
            test_time = torch.tensor([1]).to(device)
            output = unet(test_input, test_labels, test_time)
            print(f"Model test output shape: {output.shape}")
            
        except Exception as e:
            traceback.print_exc()
            raise ValueError(f"Error loading model: {str(e)}")
    else:
        raise FileNotFoundError(f"Model weights not found at {model_path}")
    
    diffusion_model.eval()
    return diffusion_model

MODEL_NAME = "model_weights.pth"
model_path = MODEL_NAME
print("Loading model...")
try:
    loaded_model = load_model(model_path, device)
    print("Model loaded successfully!")
except Exception as e:
    print(f"Failed to load model: {e}")
    print("Creating dummy model for demonstration")
    loaded_model = DiffusionModel(UNet(num_classes=NUM_CLASSES)).to(device)

def cancel_generation():
    cancel_event.set()
    return "Generation cancelled"

def generate_images(label_str, num_images, progress=gr.Progress()):
    global loaded_model
    cancel_event.clear()
    
    if num_images < 1 or num_images > 10:
        raise gr.Error("Number of images must be between 1 and 10")
    
    label_map = {'Pneumonia': 0, 'Pneumothorax': 1}
    if label_str not in label_map:
        raise gr.Error("Invalid condition selected")

    labels = torch.zeros(num_images, NUM_CLASSES)
    labels[:, label_map[label_str]] = 1

    try:
        def progress_callback(progress_val):
            progress(progress_val, desc="Generating...")
            if cancel_event.is_set():
                raise gr.Error("Generation was cancelled by user")

        with torch.no_grad():
            images = loaded_model.sample(
                num_images=num_images,
                img_size=IMG_SIZE,
                num_classes=NUM_CLASSES,
                labels=labels,
                device=device,
                progress_callback=progress_callback
            )
        
        if images is None:
            return None, None
            
        processed_images = []
        for img in images:
            img_np = img.cpu().permute(1, 2, 0).numpy()
            img_np = (img_np * 255).clip(0, 255).astype(np.uint8)
            pil_img = Image.fromarray(img_np)
            processed_images.append(pil_img)
        
        if num_images == 1:
            return processed_images[0], processed_images
        else:
            return None, processed_images

    except Exception as e:
        traceback.print_exc()
        raise gr.Error(f"Generation failed: {str(e)}")
    finally:
        torch.cuda.empty_cache()

# Gradio UI
with gr.Blocks(theme=gr.themes.Soft(
    primary_hue="violet",
    neutral_hue="slate",
    font=[gr.themes.GoogleFont("Poppins")],
    text_size="md"
)) as demo:
    gr.Markdown("""
    <center>
    <h1>Synthetic X-ray Generator</h1>
    <p><em>Generate synthetic chest X-rays conditioned on pathology</em></p>
    </center>
    """)
    
    with gr.Row():
        with gr.Column(scale=1):
            condition = gr.Dropdown(
                ["Pneumonia", "Pneumothorax"],
                label="Select Condition",
                value="Pneumonia",
                interactive=True
            )
            num_images = gr.Slider(
                1, 10, value=1, step=1,
                label="Number of Images",
                interactive=True
            )
            
            with gr.Row():
                submit_btn = gr.Button("Generate", variant="primary")
                cancel_btn = gr.Button("Cancel", variant="stop")
            
            gr.Markdown("""
            <div style="text-align: center; margin-top: 10px;">
                <small>Note: Generation may take several seconds per image</small>
            </div>
            """)
        
        with gr.Column(scale=2):
            with gr.Tabs():
                with gr.TabItem("Output", id="output_tab"):
                    single_image = gr.Image(
                        label="Generated X-ray",
                        height=400,
                        visible=True
                    )
                    gallery = gr.Gallery(
                        label="Generated X-rays",
                        columns=3,
                        height="auto",
                        object_fit="contain",
                        visible=False
                    )
    
    def update_ui_based_on_count(num_images):
        if num_images == 1:
            return {
                single_image: gr.update(visible=True),
                gallery: gr.update(visible=False)
            }
        else:
            return {
                single_image: gr.update(visible=False),
                gallery: gr.update(visible=True)
            }
    
    num_images.change(
        fn=update_ui_based_on_count,
        inputs=num_images,
        outputs=[single_image, gallery]
    )
    
    submit_btn.click(
        fn=generate_images,
        inputs=[condition, num_images],
        outputs=[single_image, gallery]
    )
    
    cancel_btn.click(
        fn=cancel_generation,
        outputs=None
    )

    demo.css = """
    .gradio-container {
        background: linear-gradient(135deg, #f5f7fa 0%, #e4e8f0 100%);
    }
    .gallery-container {
        background-color: white !important;
    }
    """

if __name__ == "__main__":
    demo.launch(server_name="0.0.0.0", server_port=7860)