Spaces:
Sleeping
Sleeping
File size: 13,052 Bytes
d5e5728 aa082d3 d5e5728 aa082d3 d5e5728 aa082d3 d5e5728 aa082d3 a4cf41d aa082d3 a4cf41d aa082d3 a4cf41d aa082d3 a4cf41d d5e5728 aa082d3 d5e5728 aa082d3 d5e5728 aa082d3 d5e5728 aa082d3 d5e5728 aa082d3 d5e5728 aa082d3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 |
import torch
import torch.nn as nn
import gradio as gr
from PIL import Image
import numpy as np
import math
import os
from threading import Event
import traceback
# Constants
IMG_SIZE = 128
TIMESTEPS = 300
NUM_CLASSES = 2
# Global Cancellation Flag
cancel_event = Event()
# Device Configuration
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# --- Model Definitions (from second file) ---
class SinusoidalPositionEmbeddings(nn.Module):
def __init__(self, dim):
super().__init__()
self.dim = dim
self.register_buffer('embeddings', self._precompute_embeddings(dim))
def _precompute_embeddings(self, dim):
half_dim = dim // 2
emb = math.log(10000) / (half_dim - 1)
emb = torch.exp(torch.arange(half_dim) * -emb)
return emb
def forward(self, time):
device = time.device
embeddings = self.embeddings.to(device)
embeddings = time[:, None] * embeddings[None, :]
output = torch.cat([embeddings.sin(), embeddings.cos()], dim=-1)
return output
class UNet(nn.Module):
def __init__(self, in_channels=3, out_channels=3, num_classes=2, time_dim=256):
super().__init__()
self.num_classes = num_classes
self.label_embedding = nn.Embedding(num_classes, time_dim)
self.time_mlp = nn.Sequential(
SinusoidalPositionEmbeddings(time_dim),
nn.Linear(time_dim, time_dim),
nn.ReLU(),
nn.Linear(time_dim, time_dim)
)
self.inc = self.double_conv(in_channels, 64)
self.down1 = self.down(64 + time_dim * 2, 128)
self.down2 = self.down(128 + time_dim * 2, 256)
self.down3 = self.down(256 + time_dim * 2, 512)
self.bottleneck = self.double_conv(512 + time_dim * 2, 1024)
self.up1 = nn.ConvTranspose2d(1024, 256, kernel_size=2, stride=2)
self.upconv1 = self.double_conv(256 + 256 + time_dim * 2, 256)
self.up2 = nn.ConvTranspose2d(256, 128, kernel_size=2, stride=2)
self.upconv2 = self.double_conv(128 + 128 + time_dim * 2, 128)
self.up3 = nn.ConvTranspose2d(128, 64, kernel_size=2, stride=2)
self.upconv3 = self.double_conv(64 + 64 + time_dim * 2, 64)
self.outc = nn.Conv2d(64, out_channels, kernel_size=1)
def double_conv(self, in_channels, out_channels):
return nn.Sequential(
nn.Conv2d(in_channels, out_channels, kernel_size=3, padding=1),
nn.ReLU(inplace=True),
nn.Conv2d(out_channels, out_channels, kernel_size=3, padding=1),
nn.ReLU(inplace=True)
)
def down(self, in_channels, out_channels):
return nn.Sequential(
nn.MaxPool2d(2),
self.double_conv(in_channels, out_channels)
)
def forward(self, x, labels, time):
label_indices = torch.argmax(labels, dim=1)
label_emb = self.label_embedding(label_indices)
t_emb = self.time_mlp(time)
combined_emb = torch.cat([t_emb, label_emb], dim=1)
combined_emb = combined_emb.unsqueeze(-1).unsqueeze(-1)
x1 = self.inc(x)
x1_cat = torch.cat([x1, combined_emb.repeat(1, 1, x1.shape[-2], x1.shape[-1])], dim=1)
x2 = self.down1(x1_cat)
x2_cat = torch.cat([x2, combined_emb.repeat(1, 1, x2.shape[-2], x2.shape[-1])], dim=1)
x3 = self.down2(x2_cat)
x3_cat = torch.cat([x3, combined_emb.repeat(1, 1, x3.shape[-2], x3.shape[-1])], dim=1)
x4 = self.down3(x3_cat)
x4_cat = torch.cat([x4, combined_emb.repeat(1, 1, x4.shape[-2], x4.shape[-1])], dim=1)
x5 = self.bottleneck(x4_cat)
x = self.up1(x5)
x = torch.cat([x, x3], dim=1)
x = torch.cat([x, combined_emb.repeat(1, 1, x.shape[-2], x.shape[-1])], dim=1)
x = self.upconv1(x)
x = self.up2(x)
x = torch.cat([x, x2], dim=1)
x = torch.cat([x, combined_emb.repeat(1, 1, x.shape[-2], x.shape[-1])], dim=1)
x = self.upconv2(x)
x = self.up3(x)
x = torch.cat([x, x1], dim=1)
x = torch.cat([x, combined_emb.repeat(1, 1, x.shape[-2], x.shape[-1])], dim=1)
x = self.upconv3(x)
output = self.outc(x)
return output
class DiffusionModel(nn.Module):
def __init__(self, model, timesteps=500, time_dim=256):
super().__init__()
self.model = model
self.timesteps = timesteps
self.time_dim = time_dim
self.betas = self.linear_schedule(timesteps)
self.alphas = 1. - self.betas
self.register_buffer('alpha_bars', torch.cumprod(self.alphas, dim=0).float())
def linear_schedule(self, timesteps):
scale = 1000 / timesteps
beta_start = scale * 0.0001
beta_end = scale * 0.02
return torch.linspace(beta_start, beta_end, timesteps, dtype=torch.float64)
def forward_diffusion(self, x_0, t, noise):
x_0 = x_0.float()
noise = noise.float()
alpha_bar_t = self.alpha_bars[t].view(-1, 1, 1, 1)
x_t = torch.sqrt(alpha_bar_t) * x_0 + torch.sqrt(1. - alpha_bar_t) * noise
return x_t
def forward(self, x_0, labels):
t = torch.randint(0, self.timesteps, (x_0.shape[0],), device=x_0.device).long()
noise = torch.randn_like(x_0)
x_t = self.forward_diffusion(x_0, t, noise)
predicted_noise = self.model(x_t, labels, t.float())
return predicted_noise, noise, t
@torch.no_grad()
def sample(model, num_images, timesteps, img_size, num_classes, labels, device, progress_callback=None):
x_t = torch.randn(num_images, 3, img_size, img_size).to(device)
if labels.ndim == 1:
labels_one_hot = torch.zeros(num_images, num_classes).to(device)
labels_one_hot[torch.arange(num_images), labels] = 1
labels = labels_one_hot
else:
labels = labels.to(device)
for t in reversed(range(timesteps)):
if cancel_event.is_set():
return None
t_tensor = torch.full((num_images,), t, device=device, dtype=torch.float)
predicted_noise = model.model(x_t, labels, t_tensor)
beta_t = model.betas[t].to(device)
alpha_t = model.alphas[t].to(device)
alpha_bar_t = model.alpha_bars[t].to(device)
mean = (1 / torch.sqrt(alpha_t)) * (x_t - (beta_t / torch.sqrt(1 - alpha_bar_t)) * predicted_noise)
variance = beta_t
if t > 0:
noise = torch.randn_like(x_t)
else:
noise = torch.zeros_like(x_t)
x_t = mean + torch.sqrt(variance) * noise
if progress_callback:
progress_callback((timesteps - t) / timesteps)
x_0 = torch.clamp(x_t, -1., 1.)
mean = torch.tensor([0.485, 0.456, 0.406]).view(1, 3, 1, 1).to(device)
std = torch.tensor([0.229, 0.224, 0.225]).view(1, 3, 1, 1).to(device)
x_0 = std * x_0 + mean
x_0 = torch.clamp(x_0, 0., 1.)
return x_0
def load_model(model_path, device):
unet_model = UNet(num_classes=NUM_CLASSES).to(device)
diffusion_model = DiffusionModel(unet_model, timesteps=TIMESTEPS).to(device)
try:
checkpoint = torch.load(model_path, map_location=device)
if 'model_state_dict' in checkpoint:
diffusion_model.model.load_state_dict(checkpoint['model_state_dict'])
else:
diffusion_model.model.load_state_dict(checkpoint)
print(f"Successfully loaded model from {model_path}")
except Exception as e:
print(f"Error loading model: {e}")
print("Using randomly initialized weights")
diffusion_model.eval()
return diffusion_model
def cancel_generation():
cancel_event.set()
return "Generation cancelled"
def generate_single_image(label_str):
label_map = {'Pneumonia': 0, 'Pneumothorax': 1}
try:
label_index = label_map[label_str]
except KeyError:
raise gr.Error(f"Invalid label '{label_str}'. Please select either 'Pneumonia' or 'Pneumothorax'.")
labels = torch.zeros(1, NUM_CLASSES, device=device)
labels[0, label_index] = 1
with torch.no_grad():
generated_image = sample(
model=loaded_model,
num_images=1,
timesteps=TIMESTEPS,
img_size=IMG_SIZE,
num_classes=NUM_CLASSES,
labels=labels,
device=device
)
img_np = generated_image.squeeze(0).cpu().permute(1, 2, 0).numpy()
img_np = np.clip(img_np, 0, 1)
img_pil = Image.fromarray((img_np * 255).astype(np.uint8))
return img_pil
def generate_batch_images(label_str, num_images, progress=gr.Progress()):
global loaded_model
cancel_event.clear()
if num_images < 1 or num_images > 10:
raise gr.Error("Number of images must be between 1 and 10")
label_map = {'Pneumonia': 0, 'Pneumothorax': 1}
if label_str not in label_map:
raise gr.Error("Invalid condition selected")
labels = torch.zeros(num_images, NUM_CLASSES, device=device)
labels[:, label_map[label_str]] = 1
try:
def progress_callback(progress_val):
progress(progress_val, desc="Generating...")
if cancel_event.is_set():
raise gr.Error("Generation was cancelled by user")
with torch.no_grad():
images = sample(
model=loaded_model,
num_images=num_images,
timesteps=TIMESTEPS,
img_size=IMG_SIZE,
num_classes=NUM_CLASSES,
labels=labels,
device=device,
progress_callback=progress_callback
)
if images is None:
return None
processed_images = []
for img in images:
img_np = img.cpu().permute(1, 2, 0).numpy()
img_np = np.clip(img_np, 0, 1)
pil_img = Image.fromarray((img_np * 255).astype(np.uint8))
processed_images.append(pil_img)
return processed_images
except torch.cuda.OutOfMemoryError:
torch.cuda.empty_cache()
raise gr.Error("Out of GPU memory - try generating fewer images")
except Exception as e:
traceback.print_exc()
if str(e) != "Generation was cancelled by user":
raise gr.Error(f"Generation failed: {str(e)}")
return None
finally:
torch.cuda.empty_cache()
# Load model
MODEL_DIR = "models"
MODEL_NAME = "diffusion_unet_xray.pth"
model_path = os.path.join(MODEL_DIR, MODEL_NAME)
print("Loading model...")
loaded_model = load_model(model_path, device)
print("Model loaded successfully!")
# --- Gradio UI (from first file with modifications) ---
with gr.Blocks(theme=gr.themes.Soft(
primary_hue="violet",
neutral_hue="slate",
font=[gr.themes.GoogleFont("Poppins")],
text_size="md"
)) as demo:
gr.Markdown("""
<center>
<h1>Synthetic X-ray Generator</h1>
<p><em>Generate synthetic chest X-rays conditioned on pathology</em></p>
</center>
""")
with gr.Row():
with gr.Column(scale=1):
condition = gr.Dropdown(
["Pneumonia", "Pneumothorax"],
label="Select Condition",
value="Pneumonia",
interactive=True
)
num_images = gr.Slider(
1, 10, value=1, step=1,
label="Number of Images",
interactive=True
)
with gr.Row():
submit_btn = gr.Button("Generate", variant="primary")
cancel_btn = gr.Button("Cancel", variant="stop")
gr.Markdown("""
<div style="text-align: center; margin-top: 10px;">
<small>Note: Generation may take several seconds per image</small>
</div>
""")
with gr.Column(scale=2):
with gr.Tab("Single Image"):
single_image = gr.Image(
type="pil",
label="Generated X-ray",
height=400
)
with gr.Tab("Batch Images"):
gallery = gr.Gallery(
label="Generated X-rays",
columns=3,
height="auto",
object_fit="contain"
)
# Single image generation
condition.change(
fn=generate_single_image,
inputs=condition,
outputs=single_image
)
# Batch image generation
submit_btn.click(
fn=generate_batch_images,
inputs=[condition, num_images],
outputs=gallery
)
cancel_btn.click(
fn=cancel_generation,
outputs=None
)
demo.css = """
.gradio-container {
background: linear-gradient(135deg, #f5f7fa 0%, #e4e8f0 100%);
}
.gallery-container {
background-color: white !important;
}
"""
if __name__ == "__main__":
demo.launch(server_name="0.0.0.0", server_port=7860) |