File size: 14,521 Bytes
d5e5728
 
 
 
 
 
 
aa082d3
 
d5e5728
aa082d3
d5e5728
9378bae
d5e5728
 
aa082d3
 
 
 
d5e5728
 
4fa51e1
a4cf41d
 
 
 
 
 
4fa51e1
 
a4cf41d
 
4fa51e1
 
 
a4cf41d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4fa51e1
a4cf41d
 
 
522b335
9cb7ad8
a4cf41d
dd9af11
 
 
522b335
4fa51e1
522b335
 
 
a4cf41d
dd9af11
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
21dbdf0
dd9af11
 
 
 
 
 
 
 
 
 
 
 
 
 
 
21dbdf0
dd9af11
f6ed1f7
dd9af11
 
f6ed1f7
dd9af11
 
 
a4cf41d
dd9af11
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d5e5728
4fa51e1
 
d5e5728
4fa51e1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d5e5728
 
 
9378bae
f6ed1f7
 
 
 
 
 
 
 
 
 
 
d5e5728
aa082d3
 
 
 
3d428a2
aa082d3
 
 
 
 
 
 
 
 
 
21dbdf0
aa082d3
 
 
 
 
 
 
 
 
4fa51e1
dd9af11
 
 
 
 
 
 
aa082d3
dd9af11
aa082d3
3d428a2
dd9af11
aa082d3
 
dd9af11
 
 
21dbdf0
4fa51e1
dd9af11
 
 
aa082d3
dd9af11
aa082d3
3d428a2
 
 
 
aa082d3
 
 
21dbdf0
aa082d3
 
9378bae
4fa51e1
aa082d3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3d428a2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
aa082d3
3d428a2
 
 
 
aa082d3
 
 
3d428a2
aa082d3
3d428a2
aa082d3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d5e5728
 
aa082d3
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
import torch
import torch.nn as nn
import gradio as gr
from PIL import Image
import numpy as np
import math
import os
from threading import Event
import traceback

# Constants
IMG_SIZE = 128
TIMESTEPS = 500
NUM_CLASSES = 2

# Global Cancellation Flag
cancel_event = Event()

# Device Configuration
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

# --- Model Definitions ---
class SinusoidalPositionEmbeddings(nn.Module):
    def __init__(self, dim):
        super().__init__()
        self.dim = dim
        half_dim = dim // 2
        emb = math.log(10000) / (half_dim - 1)
        emb = torch.exp(torch.arange(half_dim, dtype=torch.float32) * -emb)
        self.register_buffer('embeddings', emb)

    def forward(self, time):
        embeddings = self.embeddings.to(time.device)
        embeddings = time.float()[:, None] * embeddings[None, :]
        return torch.cat([embeddings.sin(), embeddings.cos()], dim=-1)

class UNet(nn.Module):
    def __init__(self, in_channels=3, out_channels=3, num_classes=2, time_dim=256):
        super().__init__()
        self.num_classes = num_classes
        self.label_embedding = nn.Embedding(num_classes, time_dim)

        self.time_mlp = nn.Sequential(
            SinusoidalPositionEmbeddings(time_dim),
            nn.Linear(time_dim, time_dim),
            nn.ReLU(),
            nn.Linear(time_dim, time_dim)
        )

        self.inc = self.double_conv(in_channels, 64)
        self.down1 = self.down(64 + time_dim * 2, 128)
        self.down2 = self.down(128 + time_dim * 2, 256)
        self.down3 = self.down(256 + time_dim * 2, 512)

        self.bottleneck = self.double_conv(512 + time_dim * 2, 1024)

        self.up1 = nn.ConvTranspose2d(1024, 256, kernel_size=2, stride=2)
        self.upconv1 = self.double_conv(256 + 256 + time_dim * 2, 256)

        self.up2 = nn.ConvTranspose2d(256, 128, kernel_size=2, stride=2)
        self.upconv2 = self.double_conv(128 + 128 + time_dim * 2, 128)

        self.up3 = nn.ConvTranspose2d(128, 64, kernel_size=2, stride=2)
        self.upconv3 = self.double_conv(64 + 64 + time_dim * 2, 64)

        self.outc = nn.Conv2d(64, out_channels, kernel_size=1)

    def double_conv(self, in_channels, out_channels):
        return nn.Sequential(
            nn.Conv2d(in_channels, out_channels, kernel_size=3, padding=1),
            nn.ReLU(inplace=True),
            nn.Conv2d(out_channels, out_channels, kernel_size=3, padding=1),
            nn.ReLU(inplace=True)
        )

    def down(self, in_channels, out_channels):
        return nn.Sequential(
            nn.MaxPool2d(2),
            self.double_conv(in_channels, out_channels)
        )

    def forward(self, x, labels, time):
        label_indices = torch.argmax(labels, dim=1)
        label_emb = self.label_embedding(label_indices)
        t_emb = self.time_mlp(time)

        combined_emb = torch.cat([t_emb, label_emb], dim=1)
        combined_emb = combined_emb.unsqueeze(-1).unsqueeze(-1)

        x1 = self.inc(x)
        x1_cat = torch.cat([x1, combined_emb.repeat(1, 1, x1.shape[-2], x1.shape[-1])], dim=1)

        x2 = self.down1(x1_cat)
        x2_cat = torch.cat([x2, combined_emb.repeat(1, 1, x2.shape[-2], x2.shape[-1])], dim=1)

        x3 = self.down2(x2_cat)
        x3_cat = torch.cat([x3, combined_emb.repeat(1, 1, x3.shape[-2], x3.shape[-1])], dim=1)

        x4 = self.down3(x3_cat)
        x4_cat = torch.cat([x4, combined_emb.repeat(1, 1, x4.shape[-2], x4.shape[-1])], dim=1)

        x5 = self.bottleneck(x4_cat)

        x = self.up1(x5)
        x = torch.cat([x, x3], dim=1)
        x = torch.cat([x, combined_emb.repeat(1, 1, x.shape[-2], x.shape[-1])], dim=1)
        x = self.upconv1(x)

        x = self.up2(x)
        x = torch.cat([x, x2], dim=1)
        x = torch.cat([x, combined_emb.repeat(1, 1, x.shape[-2], x.shape[-1])], dim=1)
        x = self.upconv2(x)

        x = self.up3(x)
        x = torch.cat([x, x1], dim=1)
        x = torch.cat([x, combined_emb.repeat(1, 1, x.shape[-2], x.shape[-1])], dim=1)
        x = self.upconv3(x)

        output = self.outc(x)
        return output

class DiffusionModel(nn.Module):
    def __init__(self, model, timesteps=TIMESTEPS, time_dim=256):
        super().__init__()
        self.model = model
        self.timesteps = timesteps
        
        # More conservative noise schedule
        scale = 1000 / timesteps
        beta_start = 0.0001
        beta_end = 0.02
        self.betas = torch.linspace(beta_start, beta_end, timesteps, dtype=torch.float32)**1.5 
        
        self.alphas = 1. - self.betas
        self.alphas_cumprod = torch.cumprod(self.alphas, dim=0)
        self.register_buffer('sqrt_alphas_cumprod', torch.sqrt(self.alphas_cumprod))
        self.register_buffer('sqrt_one_minus_alphas_cumprod', torch.sqrt(1. - self.alphas_cumprod))

@torch.no_grad()
def sample(self, num_images, timesteps, img_size, num_classes, labels, device, progress_callback=None):
    # Initialize with reduced noise scale
    x_t = torch.randn((num_images, 3, img_size, img_size), device=device) * 0.7
    
    # Convert labels if needed
    if labels.ndim == 1:
        labels_one_hot = torch.zeros(num_images, num_classes, device=device)
        labels_one_hot[torch.arange(num_images), labels] = 1
        labels = labels_one_hot
    
    for t in reversed(range(timesteps)):
        if cancel_event.is_set():
            return None
            
        t_tensor = torch.full((num_images,), t, device=device, dtype=torch.long)
        
        # Predict noise with model
        pred_noise = self.model(x_t, labels, t_tensor.float())
        
        # Get current alpha values
        alpha_t = self.alphas[t]
        alpha_bar_t = self.alphas_cumprod[t]
        alpha_bar_t_prev = self.alphas_cumprod[t-1] if t > 0 else torch.tensor(1.0)
        
        # Calculate predicted x0 with more stable equations
        pred_x0 = (x_t - torch.sqrt(1 - alpha_bar_t) * pred_noise) / torch.sqrt(alpha_bar_t)
        
        # Direction pointing to x_t with reduced noise impact
        pred_dir = torch.sqrt(1 - alpha_bar_t_prev) * pred_noise
        
        # Dynamic noise scaling based on timestep
        if t > 0:
            noise_scale = 0.3 * (t / timesteps)  # Reduce noise as we get closer to final image
            noise = torch.randn_like(x_t) * noise_scale
        else:
            noise = torch.zeros_like(x_t)
            
        # Update x_t with more stable combination
        x_t = torch.sqrt(alpha_bar_t_prev) * pred_x0 + pred_dir + noise
        
        # Progress callback
        if progress_callback:
            progress_callback((timesteps - t) / timesteps)

    # Enhanced normalization with contrast adjustment
    x_t = torch.clamp(x_t, -1, 1)
    x_t = (x_t + 1) / 2  # Scale to [0,1]
    
    # Post-processing directly in the tensor
    x_t = self._post_process(x_t)
    
    return x_t

def _post_process(self, image_tensor):
    """Apply simple post-processing to reduce noise"""
    # Contrast adjustment
    mean_val = image_tensor.mean()
    image_tensor = (image_tensor - mean_val) * 1.2 + mean_val
    
    # Mild Gaussian blur (implemented as depthwise convolution)
    if hasattr(self, '_blur_kernel'):
        blur_kernel = self._blur_kernel.to(image_tensor.device)
    else:
        blur_kernel = torch.tensor([
            [0.05, 0.1, 0.05],
            [0.1, 0.4, 0.1],
            [0.05, 0.1, 0.05]
        ], dtype=torch.float32).view(1, 1, 3, 3).repeat(3, 1, 1, 1)
        self._blur_kernel = blur_kernel
        
    # Apply blur to each channel
    padding = (1, 1, 1, 1)
    image_tensor = torch.nn.functional.conv2d(
        image_tensor.permute(0, 3, 1, 2),  # NHWC to NCHW
        blur_kernel,
        padding=1,
        groups=3
    ).permute(0, 2, 3, 1)  # Back to NHWC
    
    return torch.clamp(image_tensor, 0, 1)

    
def load_model(model_path, device):
    unet = UNet(num_classes=NUM_CLASSES).to(device)
    diffusion_model = DiffusionModel(unet).to(device)
    
    if os.path.exists(model_path):
        try:
            checkpoint = torch.load(model_path, map_location=device)
            
            # Handle both full model and state_dict loading
            if 'model_state_dict' in checkpoint:
                state_dict = checkpoint['model_state_dict']
            else:
                state_dict = checkpoint
            
            # Handle both prefixed and non-prefixed state dicts
            if all(k.startswith('model.') for k in state_dict.keys()):
                state_dict = {k[6:]: v for k, v in state_dict.items()}
            
            unet.load_state_dict(state_dict, strict=False)
            print("Model loaded successfully")
            
            # Verify model loading
            test_input = torch.randn(1, 3, IMG_SIZE, IMG_SIZE).to(device)
            test_labels = torch.zeros(1, NUM_CLASSES).to(device)
            test_time = torch.tensor([1]).to(device)
            output = unet(test_input, test_labels, test_time)
            print(f"Model test output shape: {output.shape}")
            
        except Exception as e:
            traceback.print_exc()
            raise ValueError(f"Error loading model: {str(e)}")
    else:
        raise FileNotFoundError(f"Model weights not found at {model_path}")
    
    diffusion_model.eval()
    return diffusion_model

MODEL_NAME = "model_weights.pth"
model_path = MODEL_NAME
print("Loading model...")
try:
    loaded_model = load_model(model_path, device)
    print("Model loaded successfully!")
except Exception as e:
    print(f"Failed to load model: {e}")
    # Create a dummy model if loading fails
    print("Creating dummy model for demonstration")
    loaded_model = DiffusionModel(UNet(num_classes=NUM_CLASSES)).to(device)

def cancel_generation():
    cancel_event.set()
    return "Generation cancelled"

def generate_images(label_str, num_images, progress=gr.Progress()):
    global loaded_model
    cancel_event.clear()
    
    if num_images < 1 or num_images > 10:
        raise gr.Error("Number of images must be between 1 and 10")
    
    label_map = {'Pneumonia': 0, 'Pneumothorax': 1}
    if label_str not in label_map:
        raise gr.Error("Invalid condition selected")

    labels = torch.zeros(num_images, NUM_CLASSES, device=device)
    labels[:, label_map[label_str]] = 1

    try:
        def progress_callback(progress_val):
            progress(progress_val, desc="Generating...")
            if cancel_event.is_set():
                raise gr.Error("Generation was cancelled by user")

        with torch.no_grad():
            images = loaded_model.sample(
            num_images=num_images,
            timesteps=int(TIMESTEPS * 1.5),  # More timesteps for cleaner images
            img_size=IMG_SIZE,
            num_classes=NUM_CLASSES,
            labels=labels,
            device=device,
            progress_callback=progress_callback
            )
    
        if images is None:
            return None, None
        
        processed_images = []
        for img in images:
            img_np = img.cpu().numpy()
        
        # Convert to PIL with enhanced contrast
            img_np = (img_np * 255).clip(0, 255).astype(np.uint8)
            pil_img = Image.fromarray(img_np)
        
        # Apply additional PIL-based enhancements
            pil_img = pil_img.filter(ImageFilter.SMOOTH_MORE)
            processed_images.append(pil_img)

        
        if num_images == 1:
            return processed_images[0], processed_images
        else:
            return None, processed_images

    except Exception as e:
        traceback.print_exc()
        raise gr.Error(f"Generation failed: {str(e)}")
    finally:
        torch.cuda.empty_cache()

# Gradio UI
with gr.Blocks(theme=gr.themes.Soft(
    primary_hue="violet",
    neutral_hue="slate",
    font=[gr.themes.GoogleFont("Poppins")],
    text_size="md"
)) as demo:
    gr.Markdown("""
    <center>
    <h1>Synthetic X-ray Generator</h1>
    <p><em>Generate synthetic chest X-rays conditioned on pathology</em></p>
    </center>
    """)
    
    with gr.Row():
        with gr.Column(scale=1):
            condition = gr.Dropdown(
                ["Pneumonia", "Pneumothorax"],
                label="Select Condition",
                value="Pneumonia",
                interactive=True
            )
            num_images = gr.Slider(
                1, 10, value=1, step=1,
                label="Number of Images",
                interactive=True
            )
            
            with gr.Row():
                submit_btn = gr.Button("Generate", variant="primary")
                cancel_btn = gr.Button("Cancel", variant="stop")
            
            gr.Markdown("""
            <div style="text-align: center; margin-top: 10px;">
                <small>Note: Generation may take several seconds per image</small>
            </div>
            """)
        
        with gr.Column(scale=2):
            with gr.Tabs():
                with gr.TabItem("Output", id="output_tab"):
                    single_image = gr.Image(
                        label="Generated X-ray",
                        height=400,
                        visible=True
                    )
                    gallery = gr.Gallery(
                        label="Generated X-rays",
                        columns=3,
                        height="auto",
                        object_fit="contain",
                        visible=False
                    )
    
    def update_ui_based_on_count(num_images):
        if num_images == 1:
            return {
                single_image: gr.update(visible=True),
                gallery: gr.update(visible=False)
            }
        else:
            return {
                single_image: gr.update(visible=False),
                gallery: gr.update(visible=True)
            }
    
    num_images.change(
        fn=update_ui_based_on_count,
        inputs=num_images,
        outputs=[single_image, gallery]
    )
    
    submit_btn.click(
        fn=generate_images,
        inputs=[condition, num_images],
        outputs=[single_image, gallery]
    )
    
    cancel_btn.click(
        fn=cancel_generation,
        outputs=None
    )

    demo.css = """
    .gradio-container {
        background: linear-gradient(135deg, #f5f7fa 0%, #e4e8f0 100%);
    }
    .gallery-container {
        background-color: white !important;
    }
    """

if __name__ == "__main__":
    demo.launch(server_name="0.0.0.0", server_port=7860)