Vedansh-7's picture
Update app.py
9cb7ad8
raw
history blame
13.8 kB
import torch
import torch.nn as nn
import gradio as gr
from PIL import Image
import numpy as np
import math
import os
from threading import Event
import traceback
# Constants
IMG_SIZE = 128
TIMESTEPS = 300
NUM_CLASSES = 2
# Global Cancellation Flag
cancel_event = Event()
# Device Configuration
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# --- Model Definitions ---
class SinusoidalPositionEmbeddings(nn.Module):
def __init__(self, dim):
super().__init__()
self.dim = dim
half_dim = dim // 2
emb = math.log(10000) / (half_dim - 1)
emb = torch.exp(torch.arange(half_dim, dtype=torch.float32) * -emb)
self.register_buffer('embeddings', emb)
def forward(self, time):
embeddings = self.embeddings.to(time.device)
embeddings = time.float()[:, None] * embeddings[None, :]
return torch.cat([embeddings.sin(), embeddings.cos()], dim=-1)
class UNet(nn.Module):
def __init__(self, in_channels=3, out_channels=3, num_classes=2, time_dim=256):
super().__init__()
self.num_classes = num_classes
self.label_embedding = nn.Embedding(num_classes, time_dim)
self.time_mlp = nn.Sequential(
SinusoidalPositionEmbeddings(time_dim),
nn.Linear(time_dim, time_dim),
nn.ReLU(),
nn.Linear(time_dim, time_dim)
)
self.inc = self.double_conv(in_channels, 64)
self.down1 = self.down(64 + time_dim * 2, 128)
self.down2 = self.down(128 + time_dim * 2, 256)
self.down3 = self.down(256 + time_dim * 2, 512)
self.bottleneck = self.double_conv(512 + time_dim * 2, 1024)
self.up1 = nn.ConvTranspose2d(1024, 256, kernel_size=2, stride=2)
self.upconv1 = self.double_conv(256 + 256 + time_dim * 2, 256)
self.up2 = nn.ConvTranspose2d(256, 128, kernel_size=2, stride=2)
self.upconv2 = self.double_conv(128 + 128 + time_dim * 2, 128)
self.up3 = nn.ConvTranspose2d(128, 64, kernel_size=2, stride=2)
self.upconv3 = self.double_conv(64 + 64 + time_dim * 2, 64)
self.outc = nn.Conv2d(64, out_channels, kernel_size=1)
def double_conv(self, in_channels, out_channels):
return nn.Sequential(
nn.Conv2d(in_channels, out_channels, kernel_size=3, padding=1),
nn.ReLU(inplace=True),
nn.Conv2d(out_channels, out_channels, kernel_size=3, padding=1),
nn.ReLU(inplace=True)
)
def down(self, in_channels, out_channels):
return nn.Sequential(
nn.MaxPool2d(2),
self.double_conv(in_channels, out_channels)
)
def forward(self, x, labels, time):
label_indices = torch.argmax(labels, dim=1)
label_emb = self.label_embedding(label_indices)
t_emb = self.time_mlp(time)
combined_emb = torch.cat([t_emb, label_emb], dim=1)
combined_emb = combined_emb.unsqueeze(-1).unsqueeze(-1)
x1 = self.inc(x)
x1_cat = torch.cat([x1, combined_emb.repeat(1, 1, x1.shape[-2], x1.shape[-1])], dim=1)
x2 = self.down1(x1_cat)
x2_cat = torch.cat([x2, combined_emb.repeat(1, 1, x2.shape[-2], x2.shape[-1])], dim=1)
x3 = self.down2(x2_cat)
x3_cat = torch.cat([x3, combined_emb.repeat(1, 1, x3.shape[-2], x3.shape[-1])], dim=1)
x4 = self.down3(x3_cat)
x4_cat = torch.cat([x4, combined_emb.repeat(1, 1, x4.shape[-2], x4.shape[-1])], dim=1)
x5 = self.bottleneck(x4_cat)
x = self.up1(x5)
x = torch.cat([x, x3], dim=1)
x = torch.cat([x, combined_emb.repeat(1, 1, x.shape[-2], x.shape[-1])], dim=1)
x = self.upconv1(x)
x = self.up2(x)
x = torch.cat([x, x2], dim=1)
x = torch.cat([x, combined_emb.repeat(1, 1, x.shape[-2], x.shape[-1])], dim=1)
x = self.upconv2(x)
x = self.up3(x)
x = torch.cat([x, x1], dim=1)
x = torch.cat([x, combined_emb.repeat(1, 1, x.shape[-2], x.shape[-1])], dim=1)
x = self.upconv3(x)
output = self.outc(x)
return output
class DiffusionModel(nn.Module):
def __init__(self, model, timesteps=TIMESTEPS, time_dim=256):
super().__init__()
self.model = model
self.timesteps = timesteps
# More conservative noise schedule
scale = 1000 / timesteps
beta_start = scale * 0.0001
beta_end = scale * 0.02
self.betas = torch.linspace(beta_start, beta_end, timesteps, dtype=torch.float32)
self.alphas = 1. - self.betas
self.alphas_cumprod = torch.cumprod(self.alphas, dim=0)
self.register_buffer('sqrt_alphas_cumprod', torch.sqrt(self.alphas_cumprod))
self.register_buffer('sqrt_one_minus_alphas_cumprod', torch.sqrt(1. - self.alphas_cumprod))
@torch.no_grad()
def sample(self, num_images, timesteps, img_size, num_classes, labels, device, progress_callback=None):
# Initialize with standard normal distribution (scale=1.0)
x_t = torch.randn((num_images, 3, img_size, img_size), device=device)
if labels.ndim == 1:
labels_one_hot = torch.zeros(num_images, num_classes, device=device)
labels_one_hot[torch.arange(num_images), labels] = 1
labels = labels_one_hot
else:
labels = labels.float().to(device)
for t in reversed(range(timesteps)):
if cancel_event.is_set():
return None
t_tensor = torch.full((num_images,), t, device=device, dtype=torch.long)
# Predict noise with model
pred_noise = self.model(x_t, labels, t_tensor.float())
# Get current alpha values
alpha_t = self.alphas[t]
alpha_bar_t = self.alphas_cumprod[t]
alpha_bar_t_prev = self.alphas_cumprod[t-1] if t > 0 else torch.tensor(1.0)
# Calculate coefficients
beta_t = self.betas[t]
sqrt_recip_alpha_t = torch.sqrt(1.0 / alpha_t)
sqrt_one_minus_alpha_bar_t = torch.sqrt(1.0 - alpha_bar_t)
# Calculate predicted x0
pred_x0 = (x_t - sqrt_one_minus_alpha_bar_t * pred_noise) * sqrt_recip_alpha_t
# Calculate direction pointing to x_t
pred_dir = torch.sqrt(1.0 - alpha_bar_t_prev) * pred_noise
# Noise for next step
if t > 0:
noise = torch.randn_like(x_t) * 0.5
else:
noise = torch.zeros_like(x_t)
# Update x_t with stability checks
x_t = torch.sqrt(alpha_bar_t_prev) * pred_x0 + pred_dir + noise * torch.sqrt(beta_t)
# Numerical stability check
if torch.isnan(x_t).any() or torch.isinf(x_t).any():
x_t = torch.randn_like(x_t) * 0.1
if progress_callback:
progress_callback((timesteps - t) / timesteps)
# Gentle normalization
x_t = (x_t - x_t.min()) / (x_t.max() - x_t.min() + 1e-8) # [0, 1]
x_t = torch.clamp(x_t, 0, 1) # Final safety clamp
return x_t
def load_model(model_path, device):
unet = UNet(num_classes=NUM_CLASSES).to(device)
diffusion_model = DiffusionModel(unet).to(device)
if os.path.exists(model_path):
try:
checkpoint = torch.load(model_path, map_location=device)
# Handle both full model and state_dict loading
if 'model_state_dict' in checkpoint:
state_dict = checkpoint['model_state_dict']
else:
state_dict = checkpoint
# Handle both prefixed and non-prefixed state dicts
if all(k.startswith('model.') for k in state_dict.keys()):
state_dict = {k[6:]: v for k, v in state_dict.items()}
unet.load_state_dict(state_dict, strict=False)
print("Model loaded successfully")
# Verify model loading
test_input = torch.randn(1, 3, IMG_SIZE, IMG_SIZE).to(device)
test_labels = torch.zeros(1, NUM_CLASSES).to(device)
test_time = torch.tensor([1]).to(device)
output = unet(test_input, test_labels, test_time)
print(f"Model test output shape: {output.shape}")
except Exception as e:
traceback.print_exc()
raise ValueError(f"Error loading model: {str(e)}")
else:
raise FileNotFoundError(f"Model weights not found at {model_path}")
diffusion_model.eval()
return diffusion_model
MODEL_NAME = "model_weights.pth"
model_path = MODEL_NAME
print("Loading model...")
try:
loaded_model = load_model(model_path, device)
print("Model loaded successfully!")
except Exception as e:
print(f"Failed to load model: {e}")
# Create a dummy model if loading fails
print("Creating dummy model for demonstration")
loaded_model = DiffusionModel(UNet(num_classes=NUM_CLASSES)).to(device)
def cancel_generation():
cancel_event.set()
return "Generation cancelled"
def generate_images(label_str, num_images, progress=gr.Progress()):
global loaded_model
cancel_event.clear()
if num_images < 1 or num_images > 10:
raise gr.Error("Number of images must be between 1 and 10")
label_map = {'Pneumonia': 0, 'Pneumothorax': 1}
if label_str not in label_map:
raise gr.Error("Invalid condition selected")
labels = torch.zeros(num_images, NUM_CLASSES, device=device)
labels[:, label_map[label_str]] = 1
try:
def progress_callback(progress_val):
progress(progress_val, desc="Generating...")
if cancel_event.is_set():
raise gr.Error("Generation was cancelled by user")
with torch.no_grad():
images = loaded_model.sample(
num_images=num_images,
timesteps=TIMESTEPS,
img_size=IMG_SIZE,
num_classes=NUM_CLASSES,
labels=labels,
device=device,
progress_callback=progress_callback
)
if images is None:
return None, None
processed_images = []
for img in images:
img_np = img.cpu().numpy().transpose(1, 2, 0)
img_np = (img_np * 255).clip(0, 255).astype(np.uint8)
pil_img = Image.fromarray(img_np)
processed_images.append(pil_img)
if num_images == 1:
return processed_images[0], processed_images
else:
return None, processed_images
except Exception as e:
traceback.print_exc()
raise gr.Error(f"Generation failed: {str(e)}")
finally:
torch.cuda.empty_cache()
# Gradio UI
with gr.Blocks(theme=gr.themes.Soft(
primary_hue="violet",
neutral_hue="slate",
font=[gr.themes.GoogleFont("Poppins")],
text_size="md"
)) as demo:
gr.Markdown("""
<center>
<h1>Synthetic X-ray Generator</h1>
<p><em>Generate synthetic chest X-rays conditioned on pathology</em></p>
</center>
""")
with gr.Row():
with gr.Column(scale=1):
condition = gr.Dropdown(
["Pneumonia", "Pneumothorax"],
label="Select Condition",
value="Pneumonia",
interactive=True
)
num_images = gr.Slider(
1, 10, value=1, step=1,
label="Number of Images",
interactive=True
)
with gr.Row():
submit_btn = gr.Button("Generate", variant="primary")
cancel_btn = gr.Button("Cancel", variant="stop")
gr.Markdown("""
<div style="text-align: center; margin-top: 10px;">
<small>Note: Generation may take several seconds per image</small>
</div>
""")
with gr.Column(scale=2):
with gr.Tabs():
with gr.TabItem("Output", id="output_tab"):
single_image = gr.Image(
label="Generated X-ray",
height=400,
visible=True
)
gallery = gr.Gallery(
label="Generated X-rays",
columns=3,
height="auto",
object_fit="contain",
visible=False
)
def update_ui_based_on_count(num_images):
if num_images == 1:
return {
single_image: gr.update(visible=True),
gallery: gr.update(visible=False)
}
else:
return {
single_image: gr.update(visible=False),
gallery: gr.update(visible=True)
}
num_images.change(
fn=update_ui_based_on_count,
inputs=num_images,
outputs=[single_image, gallery]
)
submit_btn.click(
fn=generate_images,
inputs=[condition, num_images],
outputs=[single_image, gallery]
)
cancel_btn.click(
fn=cancel_generation,
outputs=None
)
demo.css = """
.gradio-container {
background: linear-gradient(135deg, #f5f7fa 0%, #e4e8f0 100%);
}
.gallery-container {
background-color: white !important;
}
"""
if __name__ == "__main__":
demo.launch(server_name="0.0.0.0", server_port=7860)