Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -5,41 +5,37 @@ from PIL import Image
|
|
5 |
import numpy as np
|
6 |
import math
|
7 |
import os
|
8 |
-
from threading import Event
|
9 |
-
import traceback
|
10 |
|
11 |
# Constants
|
12 |
IMG_SIZE = 128
|
13 |
-
TIMESTEPS =
|
14 |
NUM_CLASSES = 2
|
15 |
|
16 |
-
#
|
17 |
-
cancel_event = Event()
|
18 |
-
|
19 |
-
# Device Configuration
|
20 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
21 |
|
22 |
-
#
|
23 |
class SinusoidalPositionEmbeddings(nn.Module):
|
24 |
def __init__(self, dim):
|
25 |
super().__init__()
|
26 |
self.dim = dim
|
27 |
half_dim = dim // 2
|
28 |
emb = math.log(10000) / (half_dim - 1)
|
29 |
-
emb = torch.exp(torch.arange(half_dim
|
30 |
self.register_buffer('embeddings', emb)
|
31 |
|
32 |
def forward(self, time):
|
33 |
-
|
34 |
-
embeddings =
|
|
|
35 |
return torch.cat([embeddings.sin(), embeddings.cos()], dim=-1)
|
36 |
|
|
|
37 |
class UNet(nn.Module):
|
38 |
def __init__(self, in_channels=3, out_channels=3, num_classes=2, time_dim=256):
|
39 |
super().__init__()
|
40 |
self.num_classes = num_classes
|
41 |
self.label_embedding = nn.Embedding(num_classes, time_dim)
|
42 |
-
|
43 |
self.time_mlp = nn.Sequential(
|
44 |
SinusoidalPositionEmbeddings(time_dim),
|
45 |
nn.Linear(time_dim, time_dim),
|
@@ -47,13 +43,16 @@ class UNet(nn.Module):
|
|
47 |
nn.Linear(time_dim, time_dim)
|
48 |
)
|
49 |
|
|
|
50 |
self.inc = self.double_conv(in_channels, 64)
|
51 |
self.down1 = self.down(64 + time_dim * 2, 128)
|
52 |
self.down2 = self.down(128 + time_dim * 2, 256)
|
53 |
self.down3 = self.down(256 + time_dim * 2, 512)
|
54 |
|
|
|
55 |
self.bottleneck = self.double_conv(512 + time_dim * 2, 1024)
|
56 |
|
|
|
57 |
self.up1 = nn.ConvTranspose2d(1024, 256, kernel_size=2, stride=2)
|
58 |
self.upconv1 = self.double_conv(256 + 256 + time_dim * 2, 256)
|
59 |
|
@@ -80,6 +79,7 @@ class UNet(nn.Module):
|
|
80 |
)
|
81 |
|
82 |
def forward(self, x, labels, time):
|
|
|
83 |
label_indices = torch.argmax(labels, dim=1)
|
84 |
label_emb = self.label_embedding(label_indices)
|
85 |
t_emb = self.time_mlp(time)
|
@@ -116,24 +116,41 @@ class UNet(nn.Module):
|
|
116 |
x = torch.cat([x, combined_emb.repeat(1, 1, x.shape[-2], x.shape[-1])], dim=1)
|
117 |
x = self.upconv3(x)
|
118 |
|
119 |
-
|
120 |
-
return output
|
121 |
|
|
|
122 |
class DiffusionModel(nn.Module):
|
123 |
-
def __init__(self, model, timesteps=
|
124 |
super().__init__()
|
125 |
self.model = model
|
126 |
self.timesteps = timesteps
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
|
|
|
|
|
|
131 |
self.alphas = 1. - self.betas
|
132 |
-
self.register_buffer('alpha_bars', torch.cumprod(self.alphas, dim=0))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
133 |
|
134 |
@torch.no_grad()
|
135 |
-
def sample(self, num_images, img_size, num_classes, labels, device
|
136 |
-
|
137 |
x_t = torch.randn(num_images, 3, img_size, img_size).to(device)
|
138 |
|
139 |
if labels.ndim == 1:
|
@@ -144,11 +161,7 @@ class DiffusionModel(nn.Module):
|
|
144 |
labels = labels.to(device)
|
145 |
|
146 |
for t in reversed(range(self.timesteps)):
|
147 |
-
|
148 |
-
return None
|
149 |
-
|
150 |
-
t_tensor = torch.full((num_images,), t, device=device, dtype=torch.float) # Pass time as float
|
151 |
-
|
152 |
predicted_noise = self.model(x_t, labels, t_tensor)
|
153 |
|
154 |
beta_t = self.betas[t].to(device)
|
@@ -164,12 +177,10 @@ class DiffusionModel(nn.Module):
|
|
164 |
noise = torch.zeros_like(x_t)
|
165 |
|
166 |
x_t = mean + torch.sqrt(variance) * noise
|
167 |
-
|
168 |
-
if progress_callback:
|
169 |
-
progress_callback((self.timesteps - t) / self.timesteps)
|
170 |
|
171 |
x_0 = torch.clamp(x_t, -1., 1.)
|
172 |
|
|
|
173 |
mean = torch.tensor([0.485, 0.456, 0.406]).view(1, 3, 1, 1).to(device)
|
174 |
std = torch.tensor([0.229, 0.224, 0.225]).view(1, 3, 1, 1).to(device)
|
175 |
x_0 = std * x_0 + mean
|
@@ -177,197 +188,74 @@ class DiffusionModel(nn.Module):
|
|
177 |
|
178 |
return x_0
|
179 |
|
|
|
180 |
def load_model(model_path, device):
|
181 |
-
|
182 |
-
diffusion_model = DiffusionModel(
|
183 |
-
|
184 |
if os.path.exists(model_path):
|
185 |
-
|
186 |
-
|
187 |
-
|
188 |
-
|
189 |
-
|
190 |
-
|
191 |
-
|
|
|
192 |
|
193 |
-
|
194 |
-
|
195 |
|
196 |
-
|
197 |
-
print("Model loaded successfully")
|
198 |
|
199 |
-
|
200 |
-
|
201 |
-
|
202 |
-
|
203 |
-
|
|
|
|
|
|
|
204 |
|
205 |
-
|
206 |
-
traceback.print_exc()
|
207 |
-
raise ValueError(f"Error loading model: {str(e)}")
|
208 |
else:
|
209 |
-
|
210 |
-
|
|
|
211 |
diffusion_model.eval()
|
212 |
return diffusion_model
|
213 |
|
214 |
-
|
215 |
-
|
216 |
-
print("Loading model...")
|
217 |
-
try:
|
218 |
-
loaded_model = load_model(model_path, device)
|
219 |
-
print("Model loaded successfully!")
|
220 |
-
except Exception as e:
|
221 |
-
print(f"Failed to load model: {e}")
|
222 |
-
print("Creating dummy model for demonstration")
|
223 |
-
loaded_model = DiffusionModel(UNet(num_classes=NUM_CLASSES)).to(device)
|
224 |
-
|
225 |
-
def cancel_generation():
|
226 |
-
cancel_event.set()
|
227 |
-
return "Generation cancelled"
|
228 |
-
|
229 |
-
def generate_images(label_str, num_images, progress=gr.Progress()):
|
230 |
-
global loaded_model
|
231 |
-
cancel_event.clear()
|
232 |
-
|
233 |
-
if num_images < 1 or num_images > 10:
|
234 |
-
raise gr.Error("Number of images must be between 1 and 10")
|
235 |
-
|
236 |
label_map = {'Pneumonia': 0, 'Pneumothorax': 1}
|
237 |
if label_str not in label_map:
|
238 |
-
raise gr.Error("Invalid
|
239 |
-
|
240 |
-
|
241 |
-
|
242 |
-
|
243 |
-
|
244 |
-
|
245 |
-
|
246 |
-
if cancel_event.is_set():
|
247 |
-
raise gr.Error("Generation was cancelled by user")
|
248 |
-
|
249 |
-
with torch.no_grad():
|
250 |
-
images = loaded_model.sample(
|
251 |
-
num_images=num_images,
|
252 |
-
img_size=IMG_SIZE,
|
253 |
-
num_classes=NUM_CLASSES,
|
254 |
-
labels=labels,
|
255 |
-
device=device,
|
256 |
-
progress_callback=progress_callback
|
257 |
-
)
|
258 |
-
|
259 |
-
if images is None:
|
260 |
-
return None, None
|
261 |
-
|
262 |
-
processed_images = []
|
263 |
-
for img in images:
|
264 |
-
img_np = img.cpu().permute(1, 2, 0).numpy()
|
265 |
-
img_np = (img_np * 255).clip(0, 255).astype(np.uint8)
|
266 |
-
pil_img = Image.fromarray(img_np)
|
267 |
-
processed_images.append(pil_img)
|
268 |
-
|
269 |
-
if num_images == 1:
|
270 |
-
return processed_images[0], processed_images
|
271 |
-
else:
|
272 |
-
return None, processed_images
|
273 |
-
|
274 |
-
except Exception as e:
|
275 |
-
traceback.print_exc()
|
276 |
-
raise gr.Error(f"Generation failed: {str(e)}")
|
277 |
-
finally:
|
278 |
-
torch.cuda.empty_cache()
|
279 |
-
|
280 |
-
# Gradio UI
|
281 |
-
with gr.Blocks(theme=gr.themes.Soft(
|
282 |
-
primary_hue="violet",
|
283 |
-
neutral_hue="slate",
|
284 |
-
font=[gr.themes.GoogleFont("Poppins")],
|
285 |
-
text_size="md"
|
286 |
-
)) as demo:
|
287 |
-
gr.Markdown("""
|
288 |
-
<center>
|
289 |
-
<h1>Synthetic X-ray Generator</h1>
|
290 |
-
<p><em>Generate synthetic chest X-rays conditioned on pathology</em></p>
|
291 |
-
</center>
|
292 |
-
""")
|
293 |
-
|
294 |
-
with gr.Row():
|
295 |
-
with gr.Column(scale=1):
|
296 |
-
condition = gr.Dropdown(
|
297 |
-
["Pneumonia", "Pneumothorax"],
|
298 |
-
label="Select Condition",
|
299 |
-
value="Pneumonia",
|
300 |
-
interactive=True
|
301 |
-
)
|
302 |
-
num_images = gr.Slider(
|
303 |
-
1, 10, value=1, step=1,
|
304 |
-
label="Number of Images",
|
305 |
-
interactive=True
|
306 |
-
)
|
307 |
-
|
308 |
-
with gr.Row():
|
309 |
-
submit_btn = gr.Button("Generate", variant="primary")
|
310 |
-
cancel_btn = gr.Button("Cancel", variant="stop")
|
311 |
-
|
312 |
-
gr.Markdown("""
|
313 |
-
<div style="text-align: center; margin-top: 10px;">
|
314 |
-
<small>Note: Generation may take several seconds per image</small>
|
315 |
-
</div>
|
316 |
-
""")
|
317 |
-
|
318 |
-
with gr.Column(scale=2):
|
319 |
-
with gr.Tabs():
|
320 |
-
with gr.TabItem("Output", id="output_tab"):
|
321 |
-
single_image = gr.Image(
|
322 |
-
label="Generated X-ray",
|
323 |
-
height=400,
|
324 |
-
visible=True
|
325 |
-
)
|
326 |
-
gallery = gr.Gallery(
|
327 |
-
label="Generated X-rays",
|
328 |
-
columns=3,
|
329 |
-
height="auto",
|
330 |
-
object_fit="contain",
|
331 |
-
visible=False
|
332 |
-
)
|
333 |
-
|
334 |
-
def update_ui_based_on_count(num_images):
|
335 |
-
if num_images == 1:
|
336 |
-
return {
|
337 |
-
single_image: gr.update(visible=True),
|
338 |
-
gallery: gr.update(visible=False)
|
339 |
-
}
|
340 |
-
else:
|
341 |
-
return {
|
342 |
-
single_image: gr.update(visible=False),
|
343 |
-
gallery: gr.update(visible=True)
|
344 |
-
}
|
345 |
-
|
346 |
-
num_images.change(
|
347 |
-
fn=update_ui_based_on_count,
|
348 |
-
inputs=num_images,
|
349 |
-
outputs=[single_image, gallery]
|
350 |
-
)
|
351 |
-
|
352 |
-
submit_btn.click(
|
353 |
-
fn=generate_images,
|
354 |
-
inputs=[condition, num_images],
|
355 |
-
outputs=[single_image, gallery]
|
356 |
-
)
|
357 |
-
|
358 |
-
cancel_btn.click(
|
359 |
-
fn=cancel_generation,
|
360 |
-
outputs=None
|
361 |
)
|
362 |
|
363 |
-
|
364 |
-
.
|
365 |
-
|
366 |
-
}
|
367 |
-
.gallery-container {
|
368 |
-
background-color: white !important;
|
369 |
-
}
|
370 |
-
"""
|
371 |
|
|
|
372 |
if __name__ == "__main__":
|
373 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5 |
import numpy as np
|
6 |
import math
|
7 |
import os
|
|
|
|
|
8 |
|
9 |
# Constants
|
10 |
IMG_SIZE = 128
|
11 |
+
TIMESTEPS = 300
|
12 |
NUM_CLASSES = 2
|
13 |
|
14 |
+
# Device configuration
|
|
|
|
|
|
|
15 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
16 |
|
17 |
+
# 1. Sinusoidal Embeddings
|
18 |
class SinusoidalPositionEmbeddings(nn.Module):
|
19 |
def __init__(self, dim):
|
20 |
super().__init__()
|
21 |
self.dim = dim
|
22 |
half_dim = dim // 2
|
23 |
emb = math.log(10000) / (half_dim - 1)
|
24 |
+
emb = torch.exp(torch.arange(half_dim) * -emb)
|
25 |
self.register_buffer('embeddings', emb)
|
26 |
|
27 |
def forward(self, time):
|
28 |
+
device = time.device
|
29 |
+
embeddings = self.embeddings.to(device)
|
30 |
+
embeddings = time[:, None] * embeddings[None, :]
|
31 |
return torch.cat([embeddings.sin(), embeddings.cos()], dim=-1)
|
32 |
|
33 |
+
# 2. UNet Model (matches your original architecture exactly)
|
34 |
class UNet(nn.Module):
|
35 |
def __init__(self, in_channels=3, out_channels=3, num_classes=2, time_dim=256):
|
36 |
super().__init__()
|
37 |
self.num_classes = num_classes
|
38 |
self.label_embedding = nn.Embedding(num_classes, time_dim)
|
|
|
39 |
self.time_mlp = nn.Sequential(
|
40 |
SinusoidalPositionEmbeddings(time_dim),
|
41 |
nn.Linear(time_dim, time_dim),
|
|
|
43 |
nn.Linear(time_dim, time_dim)
|
44 |
)
|
45 |
|
46 |
+
# Encoder (matches your original channel sizes)
|
47 |
self.inc = self.double_conv(in_channels, 64)
|
48 |
self.down1 = self.down(64 + time_dim * 2, 128)
|
49 |
self.down2 = self.down(128 + time_dim * 2, 256)
|
50 |
self.down3 = self.down(256 + time_dim * 2, 512)
|
51 |
|
52 |
+
# Bottleneck (matches your original)
|
53 |
self.bottleneck = self.double_conv(512 + time_dim * 2, 1024)
|
54 |
|
55 |
+
# Decoder (matches your original upsampling structure)
|
56 |
self.up1 = nn.ConvTranspose2d(1024, 256, kernel_size=2, stride=2)
|
57 |
self.upconv1 = self.double_conv(256 + 256 + time_dim * 2, 256)
|
58 |
|
|
|
79 |
)
|
80 |
|
81 |
def forward(self, x, labels, time):
|
82 |
+
# Matches your original forward pass exactly
|
83 |
label_indices = torch.argmax(labels, dim=1)
|
84 |
label_emb = self.label_embedding(label_indices)
|
85 |
t_emb = self.time_mlp(time)
|
|
|
116 |
x = torch.cat([x, combined_emb.repeat(1, 1, x.shape[-2], x.shape[-1])], dim=1)
|
117 |
x = self.upconv3(x)
|
118 |
|
119 |
+
return self.outc(x)
|
|
|
120 |
|
121 |
+
# 3. Diffusion Model (matches your original implementation)
|
122 |
class DiffusionModel(nn.Module):
|
123 |
+
def __init__(self, model, timesteps=500, time_dim=256):
|
124 |
super().__init__()
|
125 |
self.model = model
|
126 |
self.timesteps = timesteps
|
127 |
+
self.time_dim = time_dim
|
128 |
+
|
129 |
+
# Linear beta schedule (matches your original)
|
130 |
+
scale = 1000 / timesteps
|
131 |
+
beta_start = scale * 0.0001
|
132 |
+
beta_end = scale * 0.02
|
133 |
+
self.betas = torch.linspace(beta_start, beta_end, timesteps, dtype=torch.float64)
|
134 |
self.alphas = 1. - self.betas
|
135 |
+
self.register_buffer('alpha_bars', torch.cumprod(self.alphas, dim=0).float())
|
136 |
+
|
137 |
+
def forward_diffusion(self, x_0, t, noise):
|
138 |
+
x_0 = x_0.float()
|
139 |
+
noise = noise.float()
|
140 |
+
alpha_bar_t = self.alpha_bars[t].view(-1, 1, 1, 1)
|
141 |
+
x_t = torch.sqrt(alpha_bar_t) * x_0 + torch.sqrt(1. - alpha_bar_t) * noise
|
142 |
+
return x_t
|
143 |
+
|
144 |
+
def forward(self, x_0, labels):
|
145 |
+
t = torch.randint(0, self.timesteps, (x_0.shape[0],), device=x_0.device).long()
|
146 |
+
noise = torch.randn_like(x_0)
|
147 |
+
x_t = self.forward_diffusion(x_0, t, noise)
|
148 |
+
predicted_noise = self.model(x_t, labels, t.float())
|
149 |
+
return predicted_noise, noise, t
|
150 |
|
151 |
@torch.no_grad()
|
152 |
+
def sample(self, num_images, img_size, num_classes, labels, device):
|
153 |
+
# Matches your original sampling exactly
|
154 |
x_t = torch.randn(num_images, 3, img_size, img_size).to(device)
|
155 |
|
156 |
if labels.ndim == 1:
|
|
|
161 |
labels = labels.to(device)
|
162 |
|
163 |
for t in reversed(range(self.timesteps)):
|
164 |
+
t_tensor = torch.full((num_images,), t, device=device, dtype=torch.float)
|
|
|
|
|
|
|
|
|
165 |
predicted_noise = self.model(x_t, labels, t_tensor)
|
166 |
|
167 |
beta_t = self.betas[t].to(device)
|
|
|
177 |
noise = torch.zeros_like(x_t)
|
178 |
|
179 |
x_t = mean + torch.sqrt(variance) * noise
|
|
|
|
|
|
|
180 |
|
181 |
x_0 = torch.clamp(x_t, -1., 1.)
|
182 |
|
183 |
+
# Normalization matching your original code
|
184 |
mean = torch.tensor([0.485, 0.456, 0.406]).view(1, 3, 1, 1).to(device)
|
185 |
std = torch.tensor([0.229, 0.224, 0.225]).view(1, 3, 1, 1).to(device)
|
186 |
x_0 = std * x_0 + mean
|
|
|
188 |
|
189 |
return x_0
|
190 |
|
191 |
+
# 4. Model Loading (with improved error handling)
|
192 |
def load_model(model_path, device):
|
193 |
+
unet_model = UNet(num_classes=NUM_CLASSES).to(device)
|
194 |
+
diffusion_model = DiffusionModel(unet_model, timesteps=TIMESTEPS).to(device)
|
195 |
+
|
196 |
if os.path.exists(model_path):
|
197 |
+
checkpoint = torch.load(model_path, map_location=device)
|
198 |
+
|
199 |
+
if 'model_state_dict' in checkpoint:
|
200 |
+
# Filter out DiffusionModel-specific keys
|
201 |
+
state_dict = {
|
202 |
+
k[6:]: v for k, v in checkpoint['model_state_dict'].items()
|
203 |
+
if k.startswith('model.') and not k.startswith('model.alpha_bars')
|
204 |
+
}
|
205 |
|
206 |
+
# Load into UNet only
|
207 |
+
missing, unexpected = unet_model.load_state_dict(state_dict, strict=False)
|
208 |
|
209 |
+
print(f"Loaded UNet weights. Missing keys: {missing}. Unexpected keys: {unexpected}")
|
|
|
210 |
|
211 |
+
# Reinitialize diffusion model with loaded UNet
|
212 |
+
diffusion_model = DiffusionModel(unet_model, timesteps=TIMESTEPS).to(device)
|
213 |
+
else:
|
214 |
+
# Handle case where it's not a training checkpoint
|
215 |
+
diffusion_model.load_state_dict({
|
216 |
+
k: v for k, v in checkpoint.items()
|
217 |
+
if not k.startswith('alpha_bars')
|
218 |
+
})
|
219 |
|
220 |
+
print(f"Model successfully loaded from {model_path}")
|
|
|
|
|
221 |
else:
|
222 |
+
print(f"Weights file not found at {model_path}")
|
223 |
+
print("Using randomly initialized weights")
|
224 |
+
|
225 |
diffusion_model.eval()
|
226 |
return diffusion_model
|
227 |
|
228 |
+
# 5. Gradio Interface (matches your original)
|
229 |
+
def generate_image(label_str):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
230 |
label_map = {'Pneumonia': 0, 'Pneumothorax': 1}
|
231 |
if label_str not in label_map:
|
232 |
+
raise gr.Error("Invalid label selected.")
|
233 |
+
|
234 |
+
label_index = label_map[label_str]
|
235 |
+
labels_to_generate = torch.zeros(1, 2).to(device)
|
236 |
+
labels_to_generate[:, label_index] = 1
|
237 |
+
|
238 |
+
generated_images_tensor = loaded_model.sample(
|
239 |
+
1, IMG_SIZE, NUM_CLASSES, labels_to_generate, device
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
240 |
)
|
241 |
|
242 |
+
img_np = generated_images_tensor.squeeze(0).permute(1, 2, 0).cpu().numpy()
|
243 |
+
img_pil = Image.fromarray((img_np * 255).astype(np.uint8), 'RGB')
|
244 |
+
return img_pil
|
|
|
|
|
|
|
|
|
|
|
245 |
|
246 |
+
# Main Execution
|
247 |
if __name__ == "__main__":
|
248 |
+
# Load model
|
249 |
+
model_path = "model_weights.pth" # Match your filename
|
250 |
+
loaded_model = load_model(model_path, device)
|
251 |
+
|
252 |
+
# Create interface
|
253 |
+
iface = gr.Interface(
|
254 |
+
fn=generate_image,
|
255 |
+
inputs=gr.Dropdown(["Pneumonia", "Pneumothorax"], label="Select Condition"),
|
256 |
+
outputs=gr.Image(type="pil", label="Generated X-ray Image"),
|
257 |
+
title="CheXpert X-ray Image Generator",
|
258 |
+
description="Generate synthetic chest X-ray images conditioned on selected conditions (Pneumonia or Pneumothorax) using a diffusion model."
|
259 |
+
)
|
260 |
+
|
261 |
+
iface.launch()
|