Vedansh-7 commited on
Commit
6b37aa7
·
1 Parent(s): 3be1428

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +4 -22
app.py CHANGED
@@ -300,31 +300,13 @@ def generate_images(label_str, num_images, progress=gr.Progress()):
300
 
301
  processed_images = []
302
  for img in images:
303
- # Convert to numpy and remove channel dimension (3,128,128 -> 128,128)
 
304
  img_np = img.cpu().permute(1, 2, 0).mean(dim=-1).numpy()
305
-
306
- # Normalize to 0-255
307
  img_np = (img_np * 255).clip(0, 255).astype(np.uint8)
308
 
309
- # Apply bone colormap approximation (without matplotlib)
310
- # This is a simplified version of the bone colormap
311
- bone_cmap = np.array([
312
- [0, 0, 0], # Black
313
- [25, 25, 51], # Dark blue-gray
314
- [50, 50, 102], # Medium blue-gray
315
- [76, 76, 153], # Blue-gray
316
- [101, 101, 204], # Light blue-gray
317
- [127, 127, 255], # Very light blue
318
- [153, 178, 255], # Blue-white
319
- [178, 204, 255], # Light blue-white
320
- [204, 229, 255], # Very light blue-white
321
- [229, 255, 255], # Almost white
322
- [255, 255, 255] # White
323
- ], dtype=np.uint8)
324
-
325
- # Apply colormap
326
- colored = bone_cmap[(img_np * (len(bone_cmap)-1) / 255].astype(np.uint8)
327
- pil_img = Image.fromarray(colored)
328
 
329
  processed_images.append(pil_img)
330
 
 
300
 
301
  processed_images = []
302
  for img in images:
303
+ # Convert to grayscale (X-rays are naturally grayscale)
304
+ # Take the mean across RGB channels and convert to uint8
305
  img_np = img.cpu().permute(1, 2, 0).mean(dim=-1).numpy()
 
 
306
  img_np = (img_np * 255).clip(0, 255).astype(np.uint8)
307
 
308
+ # Create PIL image in grayscale mode
309
+ pil_img = Image.fromarray(img_np, mode='L')
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
310
 
311
  processed_images.append(pil_img)
312