File size: 5,926 Bytes
fe30080 5a09824 51d1c96 5a09824 51d1c96 5a09824 51d1c96 5a09824 51d1c96 5a09824 4630d3c 9d10a58 f44db21 4aa0c77 4630d3c f44db21 5a09824 53663f3 5a09824 4630d3c 5a09824 4630d3c 97d2ab4 5a09824 bac325d 0eec857 2e0398b 4aa0c77 bac325d fe30080 7079f58 20200de f93771f 82589e7 f93771f 8fe2da1 f93771f bac325d f93771f 20200de |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 |
import gradio as gr
# import os, subprocess, torchaudio
# import torch
from PIL import Image
from gtts import gTTS
import tempfile
from pydub import AudioSegment
from pydub.generators import Sine
# from fairseq.checkpoint_utils import load_model_ensemble_and_task_from_hf_hub
# from fairseq.models.text_to_speech.hub_interface import TTSHubInterface
import soundfile
import dlib
import cv2
import imageio
import os
import gradio as gr
import os, subprocess, torchaudio
from PIL import Image
import ffmpeg
block = gr.Blocks()
def one_shot_talking(image_in,audio_in):
# image = Image.open(image_in)
# image = crop_src_image(image)
# image.save("image_pre.png")
# #Pre-processing of image
# # crop_src_image(image_in)
# exit()
#Improve quality of input image
# os.system(f"python /content/GFPGAN/inference_gfpgan.py --upscale 2 -i /content/image_pre.png -o /content/results --bg_upsampler realesrgan")
# image_in_one_shot='/content/results/restored_imgs/image_pre.png'
waveform, sample_rate = torchaudio.load(audio_in)
torchaudio.save("/content/audio.wav", waveform, sample_rate, encoding="PCM_S", bits_per_sample=16)
image = Image.open(image_in)
image = pad_image(image)
image.save("/content/image_pre.png")
return "/content/audio.wav"
pocketsphinx_run = subprocess.run(['pocketsphinx', '-phone_align', 'yes', 'single', '/content/audio.wav'], check=True, capture_output=True)
jq_run = subprocess.run(['jq', '[.w[]|{word: (.t | ascii_upcase | sub("<S>"; "sil") | sub("<SIL>"; "sil") | sub("\\\(2\\\)"; "") | sub("\\\(3\\\)"; "") | sub("\\\(4\\\)"; "") | sub("\\\[SPEECH\\\]"; "SIL") | sub("\\\[NOISE\\\]"; "SIL")), phones: [.w[]|{ph: .t | sub("\\\+SPN\\\+"; "SIL") | sub("\\\+NSN\\\+"; "SIL"), bg: (.b*100)|floor, ed: (.b*100+.d*100)|floor}]}]'], input=pocketsphinx_run.stdout, capture_output=True)
with open("test.json", "w") as f:
f.write(jq_run.stdout.decode('utf-8').strip())
os.system(f"cd /content/one-shot-talking-face && python3 -B test_script.py --img_path /content/image_pre.png --audio_path /content/audio.wav --phoneme_path /content/test.json --save_dir /content/train")
exit()
#Video Quality Improvement
#1. Extract the frames from the video file using PyVideoFramesExtractor
os.system(f"python /content/PyVideoFramesExtractor/extract.py --video=/content/train/image_pre_audio.mp4")
#2. Improve image quality using GFPGAN on each frames
os.system(f"python /content/GFPGAN/inference_gfpgan.py --upscale 2 -i /content/extracted_frames/ -o /content/video_results --bg_upsampler realesrgan")
#3. Merge all the frames to a one video using imageio
path = '/content/video_results/restored_imgs'
image_folder = os.fsencode(path)
print(image_folder)
filenames = []
for file in os.listdir(image_folder):
filename = os.fsdecode(file)
if filename.endswith( ('.jpg', '.png', '.gif') ):
filenames.append(filename)
filenames.sort() # this iteration technique has no built in order, so sort the frames
images = list(map(lambda filename: imageio.imread("/content/video_results/restored_imgs/"+filename), filenames))
imageio.mimsave('/content/video_output.mp4', images, fps=25.0) # modify the frame duration as needed
input_video = ffmpeg.input('/content/video_output.mp4')
input_audio = ffmpeg.input('/content/audio.wav')
ffmpeg.concat(input_video, input_audio, v=1, a=1).output('final_output.mp4').run()
return "final_output.mp4"
def one_shot(image,input_text,gender):
if gender == 'Female' or gender == 'female':
tts = gTTS(input_text)
with tempfile.NamedTemporaryFile(suffix='.mp3', delete=False) as f:
tts.write_to_fp(f)
f.seek(0)
sound = AudioSegment.from_file(f.name, format="mp3")
sound.export("/content/audio.wav", format="wav")
result = one_shot_talking(image,'/content/audio.wav')
return result
exit()
elif gender == 'Male' or gender == 'male':
print(gender)
models, cfg, task = load_model_ensemble_and_task_from_hf_hub(
"Voicemod/fastspeech2-en-male1",
arg_overrides={"vocoder": "hifigan", "fp16": False}
)
model = models[0].cuda()
TTSHubInterface.update_cfg_with_data_cfg(cfg, task.data_cfg)
generator = task.build_generator([model], cfg)
# next(model.parameters()).device
sample = TTSHubInterface.get_model_input(task, input_text)
sample["net_input"]["src_tokens"] = sample["net_input"]["src_tokens"].cuda()
sample["net_input"]["src_lengths"] = sample["net_input"]["src_lengths"].cuda()
sample["speaker"] = sample["speaker"].cuda()
wav, rate = TTSHubInterface.get_prediction(task, model, generator, sample)
# soundfile.write("/content/audio_before.wav", wav, rate)
soundfile.write("/content/audio_before.wav", wav.cpu().clone().numpy(), rate)
cmd='ffmpeg -i /content/audio_before.wav -filter:a "atempo=0.7" -vn /content/audio.wav'
os.system(cmd)
one_shot_talking(image,'audio.wav')
def generate_ocr(method,image,gender):
return "Hello"
def run():
with block:
with gr.Group():
with gr.Box():
with gr.Row().style(equal_height=True):
image_in = gr.Image(show_label=False, type="filepath")
# audio_in = gr.Audio(show_label=False, type='filepath')
input_text=gr.Textbox(lines=3, value="Hello How are you?", label="Input Text")
gender = gr.Radio(["Female","Male"],value="Female",label="Gender")
video_out = gr.Audio(label="output")
# video_out = gr.Video(show_label=False)
with gr.Row().style(equal_height=True):
btn = gr.Button("Generate")
btn.click(one_shot, inputs=[image_in, input_text,gender], outputs=[video_out])
# block.queue()
block.launch(server_name="0.0.0.0", server_port=7860)
if __name__ == "__main__":
run()
|