File size: 8,876 Bytes
fe30080
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5a09824
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
55844f6
889843a
5a09824
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
459b579
5a09824
 
 
 
51d1c96
 
 
 
 
5a09824
51d1c96
5a09824
51d1c96
5a09824
51d1c96
5a09824
 
51d1c96
5a09824
 
 
 
 
 
 
 
 
 
 
 
 
97d2ab4
5a09824
 
bac325d
 
 
 
 
 
 
0eec857
2e0398b
5a09824
bac325d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fe30080
 
7079f58
20200de
 
f93771f
 
82589e7
f93771f
 
 
 
 
 
 
51d1c96
f93771f
 
 
 
bac325d
f93771f
 
 
 
 
 
 
 
 
 
 
 
 
 
20200de
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
import gradio as gr
# import os, subprocess, torchaudio
# import torch
from PIL import Image
from gtts import gTTS
import tempfile
from pydub import AudioSegment
from pydub.generators import Sine
# from fairseq.checkpoint_utils import load_model_ensemble_and_task_from_hf_hub
# from fairseq.models.text_to_speech.hub_interface import TTSHubInterface
import soundfile

import dlib
import cv2
import imageio
import os
import gradio as gr
import os, subprocess, torchaudio
from PIL import Image
import ffmpeg



block = gr.Blocks()

def merge_frames():
  path = '/content/video_results/restored_imgs'
  image_folder = os.fsencode(path)
  print(image_folder)
  filenames = []

  for file in os.listdir(image_folder):
      filename = os.fsdecode(file)
      if filename.endswith( ('.jpg', '.png', '.gif') ):
          filenames.append(filename)

  filenames.sort() # this iteration technique has no built in order, so sort the frames
  images = list(map(lambda filename: imageio.imread("/content/video_results/restored_imgs/"+filename), filenames))

  
  imageio.mimsave('/content/video_output.mp4', images, fps=25.0) # modify the frame duration as needed


block = gr.Blocks()



def audio_video():
  
  input_video = ffmpeg.input('/content/video_output.mp4')

  input_audio = ffmpeg.input('/content/audio.wav')

  ffmpeg.concat(input_video, input_audio, v=1, a=1).output('final_output.mp4').run()
  return "final_output.mp4"


def compute_aspect_preserved_bbox(bbox, increase_area, h, w):
    left, top, right, bot = bbox
    width = right - left
    height = bot - top

    width_increase = max(increase_area, ((1 + 2 * increase_area) * height - width) / (2 * width))
    height_increase = max(increase_area, ((1 + 2 * increase_area) * width - height) / (2 * height))

    left_t = int(left - width_increase * width)
    top_t = int(top - height_increase * height)
    right_t = int(right + width_increase * width)
    bot_t = int(bot + height_increase * height)

    left_oob = -min(0, left_t)
    right_oob = right - min(right_t, w)
    top_oob = -min(0, top_t)
    bot_oob = bot - min(bot_t, h)

    if max(left_oob, right_oob, top_oob, bot_oob) > 0:
        max_w = max(left_oob, right_oob)
        max_h = max(top_oob, bot_oob)
        if max_w > max_h:
            return left_t + max_w, top_t + max_w, right_t - max_w, bot_t - max_w
        else:
            return left_t + max_h, top_t + max_h, right_t - max_h, bot_t - max_h

    else:
        return (left_t, top_t, right_t, bot_t)

def crop_src_image(src_img, detector=None):
    if  detector is None:
        detector = dlib.get_frontal_face_detector()
    save_img='/content/image_pre.png'
    img = cv2.imread(src_img)
    faces = detector(img, 0)
    h, width, _ = img.shape
    if len(faces) > 0:
        bbox = [faces[0].left(), faces[0].top(),faces[0].right(), faces[0].bottom()]
        l = bbox[3]-bbox[1]
        bbox[1]= bbox[1]-l*0.1
        bbox[3]= bbox[3]-l*0.1
        bbox[1] = max(0,bbox[1])
        bbox[3] = min(h,bbox[3])
        bbox = compute_aspect_preserved_bbox(tuple(bbox), 0.5, img.shape[0], img.shape[1])
        img = img[bbox[1] :bbox[3] , bbox[0]:bbox[2]]
        img = cv2.resize(img, (256, 256))
        cv2.imwrite(save_img,img)
    else:
        img = cv2.resize(img,(256,256))
        cv2.imwrite(save_img, img)
    
    return '/content/image_pre.png'


def pad_image(image):
    w, h = image.size
    if w == h:
        return image
    elif w > h:
        new_image = Image.new(image.mode, (w, w), (0, 0, 0))
        new_image.paste(image, (0, (w - h) // 2))
        return new_image
    else:
        new_image = Image.new(image.mode, (h, h), (0, 0, 0))
        new_image.paste(image, ((h - w) // 2, 0))
        return new_image

def calculate(image_in, audio_in):
    waveform, sample_rate = torchaudio.load(audio_in)
    torchaudio.save("/content/audio.wav", waveform, sample_rate, encoding="PCM_S", bits_per_sample=16)
    image = Image.open(image_in)
    image = pad_image(image)
    image.save("image.png")

    pocketsphinx_run = subprocess.run(['pocketsphinx', '-phone_align', 'yes', 'single', '/content/audio.wav'], check=True, capture_output=True)
    jq_run = subprocess.run(['jq', '[.w[]|{word: (.t | ascii_upcase | sub("<S>"; "sil") | sub("<SIL>"; "sil") | sub("\\\(2\\\)"; "") | sub("\\\(3\\\)"; "") | sub("\\\(4\\\)"; "") | sub("\\\[SPEECH\\\]"; "SIL") | sub("\\\[NOISE\\\]"; "SIL")), phones: [.w[]|{ph: .t | sub("\\\+SPN\\\+"; "SIL") | sub("\\\+NSN\\\+"; "SIL"), bg: (.b*100)|floor, ed: (.b*100+.d*100)|floor}]}]'], input=pocketsphinx_run.stdout, capture_output=True)
    with open("test.json", "w") as f:
        f.write(jq_run.stdout.decode('utf-8').strip())

    os.system(f"cd /content/one-shot-talking-face && python3 -B test_script.py --img_path /content/image.png --audio_path /content/audio.wav --phoneme_path /content/test.json --save_dir /content/train")
    return "/content/train/image_audio.mp4"
    
def one_shot_talking(image_in,audio_in):

  # image = Image.open(image_in)
  # image = crop_src_image(image)
  # image.save("image_pre.png")
  # #Pre-processing of image
  # # crop_src_image(image_in)

  # exit()
  #Improve quality of input image
  # os.system(f"python /content/GFPGAN/inference_gfpgan.py --upscale 2 -i /content/image_pre.png -o /content/results  --bg_upsampler realesrgan")

  # image_in_one_shot='/content/results/restored_imgs/image_pre.png'

  #One Shot Talking Face algorithm
  calculate(image_in,audio_in)

  #Video Quality Improvement

  #1. Extract the frames from the video file using PyVideoFramesExtractor
  os.system(f"python /content/PyVideoFramesExtractor/extract.py --video=/content/train/image_pre_audio.mp4")

  #2. Improve image quality using GFPGAN on each frames
  os.system(f"python /content/GFPGAN/inference_gfpgan.py --upscale 2 -i /content/extracted_frames/image_pre_audio_frames -o /content/video_results  --bg_upsampler realesrgan")

  #3. Merge all the frames to a one video using imageio
  merge_frames()

  audio_video()
  

    
def one_shot(image,input_text,gender): 
   if gender == 'Female' or gender == 'female':
     tts = gTTS(input_text)
     with tempfile.NamedTemporaryFile(suffix='.mp3', delete=False) as f:
          tts.write_to_fp(f)
          f.seek(0)
          sound = AudioSegment.from_file(f.name, format="mp3")
          sound.export("/content/audio.wav", format="wav")
       
     one_shot_talking(image,'/content/audio.wav') 
       
   elif gender == 'Male' or gender == 'male':
      print(gender)
      models, cfg, task = load_model_ensemble_and_task_from_hf_hub(
          "Voicemod/fastspeech2-en-male1",
          arg_overrides={"vocoder": "hifigan", "fp16": False}
      )

      model = models[0].cuda()
      TTSHubInterface.update_cfg_with_data_cfg(cfg, task.data_cfg)
      generator = task.build_generator([model], cfg)
      # next(model.parameters()).device

      sample = TTSHubInterface.get_model_input(task, input_text)
      sample["net_input"]["src_tokens"] = sample["net_input"]["src_tokens"].cuda()
      sample["net_input"]["src_lengths"] = sample["net_input"]["src_lengths"].cuda()
      sample["speaker"] = sample["speaker"].cuda()

      wav, rate = TTSHubInterface.get_prediction(task, model, generator, sample)
      # soundfile.write("/content/audio_before.wav", wav, rate)
      soundfile.write("/content/audio_before.wav", wav.cpu().clone().numpy(), rate)
      cmd='ffmpeg -i /content/audio_before.wav -filter:a "atempo=0.7" -vn /content/audio.wav'
      os.system(cmd)
      one_shot_talking(image,'audio.wav')

       


def generate_ocr(method,image,gender):
    return "Hello"
    
def run():
  with block:
  
    with gr.Group():
      with gr.Box():
        with gr.Row().style(equal_height=True):
          image_in = gr.Image(show_label=False, type="filepath")
          # audio_in = gr.Audio(show_label=False, type='filepath')
          input_text=gr.Textbox(lines=3, value="Hello How are you?", label="Input Text")
          gender = gr.Radio(["Female","Male"],value="Female",label="Gender")
          video_out = gr.Video(label="output")
          # video_out = gr.Video(show_label=False)
        with gr.Row().style(equal_height=True):
          btn = gr.Button("Generate")          

    btn.click(one_shot, inputs=[image_in, input_text,gender], outputs=[video_out])
    # block.queue()
    block.launch(server_name="0.0.0.0", server_port=7860)

if __name__ == "__main__":
    run()


# image = gr.Image(show_label=True, type="filepath",label="Input Image")
# input_text=gr.Textbox(lines=3, value="Hello How are you?", label="Input Text")
# gender = gr.Radio(["Female","Male"],value="Female",label="Gender")
# output = gr.Video(show_label=True,label="Output")

# demo = gr.Interface(generate_ocr,[image,input_text,gender],[output],title="One Shot Talking Face from Text",)
# demo.launch(server_name="0.0.0.0", server_port=7860)