|
import gradio as gr |
|
|
|
|
|
from PIL import Image |
|
from gtts import gTTS |
|
import tempfile |
|
from pydub import AudioSegment |
|
from pydub.generators import Sine |
|
|
|
|
|
import soundfile |
|
|
|
import dlib |
|
import cv2 |
|
import imageio |
|
import os |
|
import gradio as gr |
|
import os, subprocess, torchaudio |
|
from PIL import Image |
|
import ffmpeg |
|
|
|
|
|
|
|
block = gr.Blocks() |
|
|
|
def pad_image(image): |
|
w, h = image.size |
|
if w == h: |
|
return image |
|
elif w > h: |
|
new_image = Image.new(image.mode, (w, w), (0, 0, 0)) |
|
new_image.paste(image, (0, (w - h) // 2)) |
|
return new_image |
|
else: |
|
new_image = Image.new(image.mode, (h, h), (0, 0, 0)) |
|
new_image.paste(image, ((h - w) // 2, 0)) |
|
return new_image |
|
|
|
def calculate(image_in, audio_in): |
|
waveform, sample_rate = torchaudio.load(audio_in) |
|
waveform = torch.mean(waveform, dim=0, keepdim=True) |
|
torchaudio.save("/content/audio.wav", waveform, sample_rate, encoding="PCM_S", bits_per_sample=16) |
|
image = Image.open(image_in) |
|
image = pad_image(image) |
|
image.save("image.png") |
|
print("Inside calculate") |
|
return audio_in |
|
pocketsphinx_run = subprocess.run(['pocketsphinx', '-phone_align', 'yes', 'single', '/content/audio.wav'], check=True, capture_output=True) |
|
jq_run = subprocess.run(['jq', '[.w[]|{word: (.t | ascii_upcase | sub("<S>"; "sil") | sub("<SIL>"; "sil") | sub("\\\(2\\\)"; "") | sub("\\\(3\\\)"; "") | sub("\\\(4\\\)"; "") | sub("\\\[SPEECH\\\]"; "SIL") | sub("\\\[NOISE\\\]"; "SIL")), phones: [.w[]|{ph: .t | sub("\\\+SPN\\\+"; "SIL") | sub("\\\+NSN\\\+"; "SIL"), bg: (.b*100)|floor, ed: (.b*100+.d*100)|floor}]}]'], input=pocketsphinx_run.stdout, capture_output=True) |
|
with open("test.json", "w") as f: |
|
f.write(jq_run.stdout.decode('utf-8').strip()) |
|
|
|
os.system(f"cd /content/one-shot-talking-face && python3 -B test_script.py --img_path /content/image.png --audio_path /content/audio.wav --phoneme_path /content/test.json --save_dir /content/train") |
|
return "/content/train/image_audio.mp4" |
|
|
|
def one_shot(image,input_text,gender): |
|
if gender == 'Female' or gender == 'female': |
|
print(gender,input_text) |
|
tts = gTTS(input_text) |
|
with tempfile.NamedTemporaryFile(suffix='.mp3', delete=False) as f: |
|
tts.write_to_fp(f) |
|
f.seek(0) |
|
sound = AudioSegment.from_file(f.name, format="mp3") |
|
sound.export("/content/audio.wav", format="wav") |
|
audio_in="/content/audio.wav" |
|
calculate(image,audio_in) |
|
|
|
|
|
|
|
elif gender == 'Male' or gender == 'male': |
|
print(gender) |
|
models, cfg, task = load_model_ensemble_and_task_from_hf_hub( |
|
"Voicemod/fastspeech2-en-male1", |
|
arg_overrides={"vocoder": "hifigan", "fp16": False} |
|
) |
|
|
|
model = models[0].cuda() |
|
TTSHubInterface.update_cfg_with_data_cfg(cfg, task.data_cfg) |
|
generator = task.build_generator([model], cfg) |
|
|
|
sample = TTSHubInterface.get_model_input(task, input_text) |
|
sample["net_input"]["src_tokens"] = sample["net_input"]["src_tokens"].cuda() |
|
sample["net_input"]["src_lengths"] = sample["net_input"]["src_lengths"].cuda() |
|
sample["speaker"] = sample["speaker"].cuda() |
|
|
|
wav, rate = TTSHubInterface.get_prediction(task, model, generator, sample) |
|
|
|
soundfile.write("/content/audio_before.wav", wav.cpu().clone().numpy(), rate) |
|
cmd='ffmpeg -i /content/audio_before.wav -filter:a "atempo=0.7" -vn /content/audio.wav' |
|
os.system(cmd) |
|
one_shot_talking(image,'audio.wav') |
|
|
|
|
|
|
|
|
|
def generate_ocr(method,image,gender): |
|
return "Hello" |
|
|
|
def run(): |
|
with block: |
|
|
|
with gr.Group(): |
|
with gr.Box(): |
|
with gr.Row().style(equal_height=True): |
|
image_in = gr.Image(show_label=False, type="filepath") |
|
|
|
input_text=gr.Textbox(lines=3, value="Hello How are you?", label="Input Text") |
|
gender = gr.Radio(["Female","Male"],value="Female",label="Gender") |
|
video_out = gr.Audio(label="output") |
|
|
|
with gr.Row().style(equal_height=True): |
|
btn = gr.Button("Generate") |
|
|
|
btn.click(one_shot, inputs=[image_in, input_text,gender], outputs=[video_out]) |
|
|
|
block.launch(server_name="0.0.0.0", server_port=7860) |
|
|
|
if __name__ == "__main__": |
|
run() |
|
|
|
|
|
|
|
|
|
|