File size: 2,854 Bytes
3e4ebd5
 
 
 
 
 
 
5780451
3e4ebd5
 
 
5427e5e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
---
title: Look-A-Like Image-Finder
emoji: πŸ“ΈπŸ”
colorFrom: green
colorTo: gray
sdk: streamlit
sdk_version: 1.42.2
app_file: src/app/app.py
pinned: false
---

<!-- Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference

πŸ“Œ Project Overview

Look-A-Like Image Finder is an AI-powered image search tool that allows users to find visually similar images based on an input image or a text query. It utilizes Pinecone for vector search, OpenAI CLIP for embeddings, and Streamlit for an intuitive user interface.

✨ Features
πŸ” Image Search – Find images similar to a given input.
πŸ“ Text-to-Image Search – Retrieve images using natural language descriptions.
πŸ“‚ Efficient Indexing – Uses Pinecone to store and retrieve image embeddings.

πŸ›  Tech Stack
πŸ–Ό Model – OpenAI CLIP (Contrastive Language-Image Pretraining)
πŸ” Vector Search – Pinecone (Efficient indexing and retrieval)
πŸ–₯ Frontend – Streamlit (Interactive web UI)
🐍 Backend – Python
☁ Deployment – Hugging Face Spaces

πŸ“₯ Resources
πŸ”— Download the Dataset : {https://unsplash.com/data/lite/latest}
πŸ”— Pinecone API Key Setup : {https://www.pinecone.io/} -->

<!-- πŸš€ How to Run the Application Locally -->

<!-- Step 1: Clone the Repository -->
<!-- Copy and paste the following command into your terminal -->
<!-- git clone https://github.com/Vela-Test1993/lookalike-image-finder.git -->
<!-- cd lookalike-image-finder -->

<!-- Step 2: Install Dependencies -->
<!-- Run the following command to install the required packages -->
<!-- pip install -r requirements.txt -->

<!-- Step 3: Start the Application -->
<!-- Use the command below to launch the app -->
<!-- streamlit run src/app/app.py -->

<!-- Step 4: Open in Your Browser -->
<!-- The application will automatically open in your default web browser. -->

<!-- ⚠ Important: API Key Setup -->
<!-- Create a .env file in the project's root directory and store your Pinecone API key inside it. -->


<!-- πŸ”‘ Setting Up the Application Components -->

<!-- 🟒 Pinecone: Vector Database -->
<!-- 1️⃣ Log in to your Pinecone account. -->
<!-- 2️⃣ Retrieve your Pinecone API key. -->
<!-- 3️⃣ Store the API key securely in the .env file. -->

<!-- πŸ“‚ Dataset: Image Processing -->
<!-- 1️⃣ Download the dataset from the following link: https://unsplash.com/data/lite/latest -->
<!-- 2️⃣ Convert the images into vector embeddings using OpenAI CLIP. -->
<!-- 3️⃣ Store the embeddings in Pinecone for efficient retrieval. -->

<!-- 🎨 Streamlit: Web Interface -->
<!-- 1️⃣ Streamlit is used to build the user-friendly UI/UX for the application. -->
<!-- 2️⃣ The frontend allows users to search for similar images using image or text queries. -->
<!-- 3️⃣ The interface is interactive and easy to navigate. -->