File size: 2,854 Bytes
3e4ebd5 5780451 3e4ebd5 5427e5e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 |
---
title: Look-A-Like Image-Finder
emoji: πΈπ
colorFrom: green
colorTo: gray
sdk: streamlit
sdk_version: 1.42.2
app_file: src/app/app.py
pinned: false
---
<!-- Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
π Project Overview
Look-A-Like Image Finder is an AI-powered image search tool that allows users to find visually similar images based on an input image or a text query. It utilizes Pinecone for vector search, OpenAI CLIP for embeddings, and Streamlit for an intuitive user interface.
β¨ Features
π Image Search β Find images similar to a given input.
π Text-to-Image Search β Retrieve images using natural language descriptions.
π Efficient Indexing β Uses Pinecone to store and retrieve image embeddings.
π Tech Stack
πΌ Model β OpenAI CLIP (Contrastive Language-Image Pretraining)
π Vector Search β Pinecone (Efficient indexing and retrieval)
π₯ Frontend β Streamlit (Interactive web UI)
π Backend β Python
β Deployment β Hugging Face Spaces
π₯ Resources
π Download the Dataset : {https://unsplash.com/data/lite/latest}
π Pinecone API Key Setup : {https://www.pinecone.io/} -->
<!-- π How to Run the Application Locally -->
<!-- Step 1: Clone the Repository -->
<!-- Copy and paste the following command into your terminal -->
<!-- git clone https://github.com/Vela-Test1993/lookalike-image-finder.git -->
<!-- cd lookalike-image-finder -->
<!-- Step 2: Install Dependencies -->
<!-- Run the following command to install the required packages -->
<!-- pip install -r requirements.txt -->
<!-- Step 3: Start the Application -->
<!-- Use the command below to launch the app -->
<!-- streamlit run src/app/app.py -->
<!-- Step 4: Open in Your Browser -->
<!-- The application will automatically open in your default web browser. -->
<!-- β Important: API Key Setup -->
<!-- Create a .env file in the project's root directory and store your Pinecone API key inside it. -->
<!-- π Setting Up the Application Components -->
<!-- π’ Pinecone: Vector Database -->
<!-- 1οΈβ£ Log in to your Pinecone account. -->
<!-- 2οΈβ£ Retrieve your Pinecone API key. -->
<!-- 3οΈβ£ Store the API key securely in the .env file. -->
<!-- π Dataset: Image Processing -->
<!-- 1οΈβ£ Download the dataset from the following link: https://unsplash.com/data/lite/latest -->
<!-- 2οΈβ£ Convert the images into vector embeddings using OpenAI CLIP. -->
<!-- 3οΈβ£ Store the embeddings in Pinecone for efficient retrieval. -->
<!-- π¨ Streamlit: Web Interface -->
<!-- 1οΈβ£ Streamlit is used to build the user-friendly UI/UX for the application. -->
<!-- 2οΈβ£ The frontend allows users to search for similar images using image or text queries. -->
<!-- 3οΈβ£ The interface is interactive and easy to navigate. -->
|