File size: 7,624 Bytes
22481bd
 
 
 
 
 
 
 
75115cd
22481bd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
172e21d
 
 
 
 
 
22481bd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
75115cd
22481bd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
import streamlit as st
import os
from application.schemas.response_schema import (
    GEMINI_GHG_PARAMETERS, GEMINI_ENVIRONMENTAL_PARAMETERS_CSRD,
    GEMINI_ENVIRONMENT_PARAMETERS, GEMINI_SOCIAL_PARAMETERS,
    GEMINI_GOVERNANCE_PARAMETERS, GEMINI_MATERIALITY_PARAMETERS,
    GEMINI_NET_ZERO_INTERVENTION_PARAMETERS
)
from application.services import gemini_api_service, streamlit_function
from application.utils import logger

logger = logger.get_logger()
streamlit_function.config_homepage()

st.title("Sustainability Report Analyzer")
st.write("Upload your sustainability report PDF and generate insights using Gemini models.")

AVAILABLE_MODELS = [
    "gemini-1.5-pro-latest",
    "gemini-2.0-flash",
    "gemini-1.5-flash",
    "gemini-2.5-pro-exp-03-25"
]

RESPONSE_SCHEMAS = {
    "Greenhouse Gas (GHG) Protocol Parameters": GEMINI_GHG_PARAMETERS,
    # "Environmental Parameters (CSRD)": GEMINI_ENVIRONMENTAL_PARAMETERS_CSRD,
    # "Environmental Parameters": GEMINI_ENVIRONMENT_PARAMETERS,
    # "Social Parameters": GEMINI_SOCIAL_PARAMETERS,
    # "Governance Parameters": GEMINI_GOVERNANCE_PARAMETERS,
    # "Materiality Parameters": GEMINI_MATERIALITY_PARAMETERS,
    # "Net Zero Intervention Parameters": GEMINI_NET_ZERO_INTERVENTION_PARAMETERS,
}

selected_model = st.selectbox("Select Gemini Model", options=AVAILABLE_MODELS)

uploaded_files = streamlit_function.upload_file("pdf", label="πŸ“€ Upload Sustainability Report PDF")
if uploaded_files:
    st.session_state.uploaded_files = uploaded_files

if "uploaded_files" not in st.session_state:
    st.session_state.uploaded_files = []

if st.session_state.uploaded_files:
    columns = st.columns(3)

    for i, pdf_file in enumerate(st.session_state.uploaded_files):
        with columns[i % 3]:
            file_name = pdf_file.name.removesuffix(".pdf")
            st.write(f"πŸ“„ **File {i+1}:** `{pdf_file.name}`")

            extract_btn = st.button(f"Extract Data from File {i+1}", key=f"extract_{i}")
            result_key = f"{selected_model}_result_file_{i+1}"

            if extract_btn:
                with st.spinner(f"Extracting data from `{pdf_file.name}` using `{selected_model}`..."):
                    try:
                        all_results = {}
                        
                        for label, schema in RESPONSE_SCHEMAS.items():
                            result = gemini_api_service.extract_emissions_data_as_json("gemini", selected_model, pdf_file, schema)
                            streamlit_function.export_results_to_excel(result, sheet_name=selected_model, filename=file_name, column=label)
                            all_results[label] = result
                        st.session_state[result_key] = all_results
                        st.success("Data extraction complete.")
                    except Exception as e:
                        logger.error(f"Extraction failed: {e}")
                        st.error("Failed to extract data.")

            if st.session_state.get(result_key):
                st.write(f"🧾 **Extracted Metrics for File {i+1}:**")
                st.json(st.session_state[result_key])

        file_path = f"data/{file_name}.xlsx"

    if os.path.exists(file_path):
        with open(file_path, "rb") as file:
            st.download_button(
                label="Download Excel File",
                data=file,
                file_name=f"{file_name}.xlsx",  
                mime="application/vnd.openxmlformats-officedocument.spreadsheetml.sheet"
            )


























# import streamlit as st
# from application.schemas.response_schema import GEMINI_GHG_PARAMETERS, GEMINI_ENVIRONMENTAL_PARAMETERS_CSRD,GEMINI_ENVIRONMENT_PARAMETERS,GEMINI_SOCIAL_PARAMETERS, GEMINI_GOVERNANCE_PARAMETERS, GEMINI_MATERIALITY_PARAMETERS, GEMINI_NET_ZERO_INTERVENTION_PARAMETERS
# from application.services import streamlit_function, gemini_model
# from application.utils import logger
# import test

# logger = logger.get_logger()
# streamlit_function.config_homepage()
# st.title("Sustainability Report Analyzer")
# st.write("Upload your sustainability report PDF and generate insights using different models.")

# MODEL = ["gemini-1.5-pro-latest", "gemini-2.0-flash", "gemini-1.5-flash", "gemini-2.5-pro-exp-03-25"]

# MODEL_1 = "gemini-1.5-pro-latest"
# MODEL_2 = "gemini-2.0-flash"
# MODEL_3 = "gemini-1.5-flash"

# API_1 = "gemini"
# API_2 = "gemini"
# API_3 = "gemini"

# response_schema = [ GEMINI_GHG_PARAMETERS, GEMINI_ENVIRONMENTAL_PARAMETERS_CSRD,
#                     GEMINI_ENVIRONMENT_PARAMETERS,GEMINI_SOCIAL_PARAMETERS,
#                     GEMINI_GOVERNANCE_PARAMETERS, GEMINI_MATERIALITY_PARAMETERS, 
#                     GEMINI_NET_ZERO_INTERVENTION_PARAMETERS]

# if "uploaded_files" not in st.session_state:
#     st.session_state.uploaded_files = []

# MODEL = st.selectbox(
#     "Select Model",
#     options=MODEL,
#     index=0,
# )

# uploaded_files = streamlit_function.upload_file("pdf", label="Upload Sustainability Report PDF")

# if uploaded_files:
#     st.session_state.uploaded_files = uploaded_files

# if st.session_state.uploaded_files:
#     columns = st.columns([5, 5, 5], gap="small")

#     for i, col in enumerate(columns):
#         if i < len(st.session_state.uploaded_files):
#             pdf_file = st.session_state.uploaded_files[i]
#             file_name = pdf_file.name.removesuffix(".pdf")
#             result_key = f"{MODEL}_result_file_{i+1}"

#             with col:
#                 st.write(f"**File {i+1}:** `{pdf_file.name}`")
#                 if st.button(f"Extract Data from File {i+1}", key=f"extract_btn_{i}"):
#                     with st.spinner(f"Extracting data from File {i+1} using {MODEL}..."):
#                         for schema in response_schema:
#                             result = gemini_model.extract_emissions_data_as_json(API_1, MODEL, pdf_file, schema)
#                             if schema == GEMINI_GHG_PARAMETERS:
#                                 column = "Greenhouse Gas (GHG) Protocol Parameters"
#                             elif schema == GEMINI_ENVIRONMENTAL_PARAMETERS_CSRD:
#                                 column = "Environmental Parameters (CSRD)"
#                             elif schema == GEMINI_ENVIRONMENT_PARAMETERS:
#                                 column = "Environmental Parameters"
#                             elif schema == GEMINI_SOCIAL_PARAMETERS:
#                                 column = "Social Parameters"
#                             elif schema == GEMINI_GOVERNANCE_PARAMETERS:
#                                 column = "Governance Parameters"
#                             elif schema == GEMINI_MATERIALITY_PARAMETERS:
#                                 column = "Materiality Parameters"
#                             elif schema == GEMINI_NET_ZERO_INTERVENTION_PARAMETERS:
#                                 column = "Net Zero Intervention Parameters"
#                             else:
#                                 column = None
                            
#                             test.export_results_to_excel(result, sheet_name=MODEL, filename=file_name, column=column )
#                             st.session_state[result_key] = result

#                 if st.session_state.get(result_key):
#                     st.write(f"**Extracted Metrics for File {i+1}:**")
#                     st.json(st.session_state[result_key])