Spaces:
Sleeping
Sleeping
Vela
commited on
Commit
·
f7d4608
1
Parent(s):
16f68b6
Created a PdfExtraction application with basic functionality
Browse files- .gitignore +5 -0
- app.py +60 -0
- application/schemas/response_schema.py +452 -0
- application/schemas/schema.xlsx +0 -0
- application/services/gemini_model.py +299 -0
- application/services/llm_service.py +349 -0
- application/services/openai_model.py +251 -0
- application/services/streamlit_function.py +89 -0
- application/utils/logger.py +35 -0
- requirements.txt +9 -0
- test.py +0 -0
.gitignore
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
.venv
|
2 |
+
.env
|
3 |
+
data
|
4 |
+
__pycache__/
|
5 |
+
logs/
|
app.py
ADDED
@@ -0,0 +1,60 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from application.services import streamlit_function, llm_service
|
2 |
+
from application.services import gemini_model, openai_model
|
3 |
+
import streamlit as st
|
4 |
+
from google.genai.errors import ClientError
|
5 |
+
from application.utils import logger
|
6 |
+
import test
|
7 |
+
|
8 |
+
logger = logger.get_logger()
|
9 |
+
|
10 |
+
streamlit_function.config_homepage()
|
11 |
+
pdf_file = streamlit_function.upload_file("pdf", label="Upload Sustainability Report PDF")
|
12 |
+
|
13 |
+
available_files = ["Select a pdf file"]
|
14 |
+
for file in llm_service.get_files():
|
15 |
+
available_files.append(file.filename)
|
16 |
+
|
17 |
+
selected_file = st.selectbox("Select a existing file", available_files)
|
18 |
+
|
19 |
+
for key in ["gpt4o_mini_result", "gpt4o_result", "gemini_result", "pdf_file"]:
|
20 |
+
if key not in st.session_state:
|
21 |
+
st.session_state[key] = None
|
22 |
+
|
23 |
+
if st.session_state.pdf_file:
|
24 |
+
with st.container():
|
25 |
+
col1, col2, col3 = st.columns([5, 5, 5], gap="small")
|
26 |
+
|
27 |
+
with col1:
|
28 |
+
if st.button("Generate GPT-4o-min Response"):
|
29 |
+
with st.spinner("Calling GPT-4o-mini..."):
|
30 |
+
result = llm_service.extract_emissions_data_as_json("openai","gpt-4o-mini",pdf_file)
|
31 |
+
# result= openai_model.extract_emissions_data_as_json("openai","gpt-4o-mini",pdf_file)
|
32 |
+
st.session_state.gpt4o_mini_result = result
|
33 |
+
if st.session_state.gpt4o_mini_result:
|
34 |
+
st.write("Extracted Metrics by gpt-4o-mini")
|
35 |
+
st.json(st.session_state.gpt4o_mini_result)
|
36 |
+
|
37 |
+
with col2:
|
38 |
+
if st.button("Generate GPT-4o Response"):
|
39 |
+
with st.spinner("Calling gpt-4o..."):
|
40 |
+
result= llm_service.extract_emissions_data_as_json("openai","gpt-4o",pdf_file)
|
41 |
+
st.session_state.gpt4o_result = result
|
42 |
+
if st.session_state.gpt4o_result:
|
43 |
+
st.write("Extracted Metrics by gpt-4o")
|
44 |
+
st.json(st.session_state.gpt4o_result)
|
45 |
+
|
46 |
+
with col3:
|
47 |
+
try:
|
48 |
+
if st.button("Generate Gemini Response"):
|
49 |
+
with st.spinner("Calling gemini-1.5-pro-latest..."):
|
50 |
+
result = llm_service.extract_emissions_data_as_json("gemini","gemini-2.0-flash", st.session_state.pdf_file)
|
51 |
+
# result = gemini_model.extract_emissions_data_as_json("gemini","gemini-2.0-flash", pdf_file)
|
52 |
+
st.session_state.gemini_result = result
|
53 |
+
except ClientError as e:
|
54 |
+
st.error(f"Gemini API Error: {e}")
|
55 |
+
logger.error("Error Details:", e.message, e.response)
|
56 |
+
|
57 |
+
if st.session_state.gemini_result:
|
58 |
+
st.write("Extracted Metrics by gemini-1.5-pro-latest")
|
59 |
+
st.json(st.session_state.gemini_result)
|
60 |
+
|
application/schemas/response_schema.py
ADDED
@@ -0,0 +1,452 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
RESPONSE_FORMAT = {
|
2 |
+
"type": "json_schema",
|
3 |
+
"json_schema": {
|
4 |
+
"name": "esg_response",
|
5 |
+
"strict": True,
|
6 |
+
"schema": {
|
7 |
+
"type": "object",
|
8 |
+
"properties": {
|
9 |
+
"company_name": {"type": "string"},
|
10 |
+
"Greenhouse Gas (GHG) Protocol Parameters": {
|
11 |
+
"type": "array",
|
12 |
+
"items": {
|
13 |
+
"type": "object",
|
14 |
+
"properties": {
|
15 |
+
"Total GHG Emissions": {"type": ["integer", "null"]},
|
16 |
+
"Total GHG Emissions Description": {
|
17 |
+
"type": "string",
|
18 |
+
"description": "Total greenhouse gases emitted by the organization."
|
19 |
+
},
|
20 |
+
"Scope 1 Emissions": {"type": ["integer", "null"]},
|
21 |
+
"Scope 1 Emissions Description": {
|
22 |
+
"type": "string",
|
23 |
+
"description": "Direct GHG emissions from owned or controlled sources."
|
24 |
+
},
|
25 |
+
"Scope 2 Emissions": {"type": ["integer", "null"]},
|
26 |
+
"Scope 2 Emissions Description": {
|
27 |
+
"type": "string",
|
28 |
+
"description": "Indirect emissions from the generation of purchased electricity."
|
29 |
+
},
|
30 |
+
"Scope 3 Emissions": {"type": ["integer", "null"]},
|
31 |
+
"Scope 3 Emissions Description": {
|
32 |
+
"type": "string",
|
33 |
+
"description": "All other indirect emissions that occur in a company’s value chain."
|
34 |
+
},
|
35 |
+
"CO₂ Emissions": {"type": ["integer", "null"]},
|
36 |
+
"CO₂ Emissions Description": {
|
37 |
+
"type": "string",
|
38 |
+
"description": "Emissions of carbon dioxide."
|
39 |
+
},
|
40 |
+
"CH₄ Emissions": {"type": ["integer", "null"]},
|
41 |
+
"CH₄ Emissions Description": {
|
42 |
+
"type": "string",
|
43 |
+
"description": "Emissions of methane."
|
44 |
+
},
|
45 |
+
"N₂O Emissions": {"type": ["integer", "null"]},
|
46 |
+
"N₂O Emissions Description": {
|
47 |
+
"type": "string",
|
48 |
+
"description": "Emissions of nitrous oxide."
|
49 |
+
},
|
50 |
+
"HFC Emissions": {"type": ["integer", "null"]},
|
51 |
+
"HFC Emissions Description": {
|
52 |
+
"type": "string",
|
53 |
+
"description": "Emissions of hydrofluorocarbons."
|
54 |
+
},
|
55 |
+
"PFC Emissions": {"type": ["integer", "null"]},
|
56 |
+
"PFC Emissions Description": {
|
57 |
+
"type": "string",
|
58 |
+
"description": "Emissions of perfluorocarbons."
|
59 |
+
}
|
60 |
+
},
|
61 |
+
"required": [
|
62 |
+
"Total GHG Emissions", "Total GHG Emissions Description",
|
63 |
+
"Scope 1 Emissions", "Scope 1 Emissions Description",
|
64 |
+
"Scope 2 Emissions", "Scope 2 Emissions Description",
|
65 |
+
"Scope 3 Emissions", "Scope 3 Emissions Description",
|
66 |
+
"CO₂ Emissions", "CO₂ Emissions Description",
|
67 |
+
"CH₄ Emissions", "CH₄ Emissions Description",
|
68 |
+
"N₂O Emissions", "N₂O Emissions Description",
|
69 |
+
"HFC Emissions", "HFC Emissions Description",
|
70 |
+
"PFC Emissions", "PFC Emissions Description"
|
71 |
+
],
|
72 |
+
"additionalProperties": False
|
73 |
+
}
|
74 |
+
},
|
75 |
+
|
76 |
+
"Net Zero Intervention Parameters": {
|
77 |
+
"type": "array",
|
78 |
+
"items": {
|
79 |
+
"type": "object",
|
80 |
+
"properties": {
|
81 |
+
"Renewable Energy Adoption": {"type": ["number", "null"]},
|
82 |
+
"Renewable Energy Adoption Description": {
|
83 |
+
"type": "string",
|
84 |
+
"description": "Proportion of energy consumption derived from renewable sources."
|
85 |
+
},
|
86 |
+
"Energy Efficiency Improvements": {"type": ["number", "null"]},
|
87 |
+
"Energy Efficiency Improvements Description": {
|
88 |
+
"type": "string",
|
89 |
+
"description": "Reduction in energy consumption due to efficiency measures."
|
90 |
+
},
|
91 |
+
"Electrification of Operations": {"type": ["number", "null"]},
|
92 |
+
"Electrification of Operations Description": {
|
93 |
+
"type": "string",
|
94 |
+
"description": "Extent to which operations have shifted from fossil fuels to electric power."
|
95 |
+
},
|
96 |
+
"Carbon Capture and Storage (CCS) Implementation": {"type": ["number", "null"]},
|
97 |
+
"Carbon Capture and Storage (CCS) Implementation Description": {
|
98 |
+
"type": "string",
|
99 |
+
"description": "Amount of CO₂ captured and stored to prevent atmospheric release."
|
100 |
+
},
|
101 |
+
"Reforestation and Afforestation Initiatives": {"type": ["number", "null"]},
|
102 |
+
"Reforestation and Afforestation Initiatives Description": {
|
103 |
+
"type": "string",
|
104 |
+
"description": "Efforts to plant trees to absorb CO₂ from the atmosphere."
|
105 |
+
},
|
106 |
+
"Sustainable Transportation Adoption": {"type": ["number", "null"]},
|
107 |
+
"Sustainable Transportation Adoption Description": {
|
108 |
+
"type": "string",
|
109 |
+
"description": "Proportion of transportation utilizing low-emission or electric vehicles."
|
110 |
+
},
|
111 |
+
"Supply Chain Emissions Reduction": {"type": ["number", "null"]},
|
112 |
+
"Supply Chain Emissions Reduction Description": {
|
113 |
+
"type": "string",
|
114 |
+
"description": "Decrease in emissions from upstream and downstream supply chain activities."
|
115 |
+
},
|
116 |
+
"Waste-to-Energy Conversion": {"type": ["number", "null"]},
|
117 |
+
"Waste-to-Energy Conversion Description": {
|
118 |
+
"type": "string",
|
119 |
+
"description": "Energy produced from the processing of waste materials."
|
120 |
+
},
|
121 |
+
"Carbon Offset Investments": {"type": ["number", "null"]},
|
122 |
+
"Carbon Offset Investments Description": {
|
123 |
+
"type": "string",
|
124 |
+
"description": "Amount of emissions offset through investments in environmental projects."
|
125 |
+
},
|
126 |
+
"Climate Risk Assessment": {"type": ["string", "null"]},
|
127 |
+
"Climate Risk Assessment Description": {
|
128 |
+
"type": "string",
|
129 |
+
"description": "Evaluation of potential risks posed by climate change to the organization."
|
130 |
+
},
|
131 |
+
"Climate Adaptation Strategies": {"type": ["string", "null"]},
|
132 |
+
"Climate Adaptation Strategies Description": {
|
133 |
+
"type": "string",
|
134 |
+
"description": "Plans implemented to adapt operations to changing climate conditions."
|
135 |
+
},
|
136 |
+
"Internal Carbon Pricing": {"type": ["number", "null"]},
|
137 |
+
"Internal Carbon Pricing Description": {
|
138 |
+
"type": "string",
|
139 |
+
"description": "Monetary value assigned to carbon emissions to incentivize reduction."
|
140 |
+
},
|
141 |
+
"Net-Zero Target Year": {"type": ["string", "null"]},
|
142 |
+
"Net-Zero Target Year Description": {
|
143 |
+
"type": "string",
|
144 |
+
"description": "Specific year by which the organization aims to achieve net-zero emissions."
|
145 |
+
},
|
146 |
+
"Interim Emission Reduction Targets": {"type": ["number", "null"]},
|
147 |
+
"Interim Emission Reduction Targets Description": {
|
148 |
+
"type": "string",
|
149 |
+
"description": "Short-term targets set to progressively reduce emissions en route to net-zero."
|
150 |
+
},
|
151 |
+
"Employee Engagement in Sustainability": {"type": ["number", "null"]},
|
152 |
+
"Employee Engagement in Sustainability Description": {
|
153 |
+
"type": "string",
|
154 |
+
"description": "Proportion of employees actively involved in sustainability programs."
|
155 |
+
},
|
156 |
+
"Investment in Low-Carbon Technologies": {"type": ["number", "null"]},
|
157 |
+
"Investment in Low-Carbon Technologies Description": {
|
158 |
+
"type": "string",
|
159 |
+
"description": "Financial resources allocated to developing or adopting low-carbon technologies."
|
160 |
+
},
|
161 |
+
"Public Disclosure of Net-Zero Progress": {"type": ["string", "null"]},
|
162 |
+
"Public Disclosure of Net-Zero Progress Description": {
|
163 |
+
"type": "string",
|
164 |
+
"description": "Regular public updates on progress toward net-zero commitments."
|
165 |
+
},
|
166 |
+
"Third-Party Verification of Emission Data": {"type": ["boolean", "null"]},
|
167 |
+
"Third-Party Verification of Emission Data Description": {
|
168 |
+
"type": "string",
|
169 |
+
"description": "Confirmation that emission data has been verified by an external party."
|
170 |
+
},
|
171 |
+
"Participation in Carbon Markets": {"type": ["boolean", "null"]},
|
172 |
+
"Participation in Carbon Markets Description": {
|
173 |
+
"type": "string",
|
174 |
+
"description": "Involvement in systems where carbon credits are bought and sold."
|
175 |
+
},
|
176 |
+
"Development of Climate-Resilient Infrastructure": {"type": ["string", "null"]},
|
177 |
+
"Development of Climate-Resilient Infrastructure Description": {
|
178 |
+
"type": "string",
|
179 |
+
"description": "Initiatives to build infrastructure resilient to climate impacts."
|
180 |
+
},
|
181 |
+
"Reduction of Methane Emissions": {"type": ["number", "null"]},
|
182 |
+
"Reduction of Methane Emissions Description": {
|
183 |
+
"type": "string",
|
184 |
+
"description": "Efforts to decrease methane emissions from operations."
|
185 |
+
},
|
186 |
+
"Implementation of Circular Economy Practices": {"type": ["string", "null"]},
|
187 |
+
"Implementation of Circular Economy Practices Description": {
|
188 |
+
"type": "string",
|
189 |
+
"description": "Adoption of processes that emphasize reuse and recycling to minimize waste."
|
190 |
+
},
|
191 |
+
"Collaboration with Industry Peers on Climate Action": {"type": ["string", "null"]},
|
192 |
+
"Collaboration with Industry Peers on Climate Action Description": {
|
193 |
+
"type": "string",
|
194 |
+
"description": "Joint initiatives with other organizations to address climate challenges."
|
195 |
+
},
|
196 |
+
"Use of Science-Based Targets": {"type": ["boolean", "null"]},
|
197 |
+
"Use of Science-Based Targets Description": {
|
198 |
+
"type": "string",
|
199 |
+
"description": "Setting emission reduction targets in line with scientific recommendations."
|
200 |
+
},
|
201 |
+
"Monitoring and Reporting Mechanisms": {"type": ["string", "null"]},
|
202 |
+
"Monitoring and Reporting Mechanisms Description": {
|
203 |
+
"type": "string",
|
204 |
+
"description": "Systems established to track and report emissions data accurately."
|
205 |
+
}
|
206 |
+
},
|
207 |
+
"required": [
|
208 |
+
"Renewable Energy Adoption", "Renewable Energy Adoption Description",
|
209 |
+
"Energy Efficiency Improvements", "Energy Efficiency Improvements Description",
|
210 |
+
"Electrification of Operations", "Electrification of Operations Description",
|
211 |
+
"Carbon Capture and Storage (CCS) Implementation", "Carbon Capture and Storage (CCS) Implementation Description",
|
212 |
+
"Reforestation and Afforestation Initiatives", "Reforestation and Afforestation Initiatives Description",
|
213 |
+
"Sustainable Transportation Adoption", "Sustainable Transportation Adoption Description",
|
214 |
+
"Supply Chain Emissions Reduction", "Supply Chain Emissions Reduction Description",
|
215 |
+
"Waste-to-Energy Conversion", "Waste-to-Energy Conversion Description",
|
216 |
+
"Carbon Offset Investments", "Carbon Offset Investments Description",
|
217 |
+
"Climate Risk Assessment", "Climate Risk Assessment Description",
|
218 |
+
"Climate Adaptation Strategies", "Climate Adaptation Strategies Description",
|
219 |
+
"Internal Carbon Pricing", "Internal Carbon Pricing Description",
|
220 |
+
"Net-Zero Target Year", "Net-Zero Target Year Description",
|
221 |
+
"Interim Emission Reduction Targets", "Interim Emission Reduction Targets Description",
|
222 |
+
"Employee Engagement in Sustainability", "Employee Engagement in Sustainability Description",
|
223 |
+
"Investment in Low-Carbon Technologies", "Investment in Low-Carbon Technologies Description",
|
224 |
+
"Public Disclosure of Net-Zero Progress", "Public Disclosure of Net-Zero Progress Description",
|
225 |
+
"Third-Party Verification of Emission Data", "Third-Party Verification of Emission Data Description",
|
226 |
+
"Participation in Carbon Markets", "Participation in Carbon Markets Description",
|
227 |
+
"Development of Climate-Resilient Infrastructure", "Development of Climate-Resilient Infrastructure Description",
|
228 |
+
"Reduction of Methane Emissions", "Reduction of Methane Emissions Description",
|
229 |
+
"Implementation of Circular Economy Practices", "Implementation of Circular Economy Practices Description",
|
230 |
+
"Collaboration with Industry Peers on Climate Action", "Collaboration with Industry Peers on Climate Action Description",
|
231 |
+
"Use of Science-Based Targets", "Use of Science-Based Targets Description",
|
232 |
+
"Monitoring and Reporting Mechanisms", "Monitoring and Reporting Mechanisms Description"
|
233 |
+
],
|
234 |
+
"additionalProperties": False
|
235 |
+
}
|
236 |
+
},
|
237 |
+
|
238 |
+
"Materiality Parameters": {
|
239 |
+
"type": "array",
|
240 |
+
"items": {
|
241 |
+
"type": "object",
|
242 |
+
"properties": {
|
243 |
+
"Stakeholder Engagement Level": {
|
244 |
+
"type": ["string", "null"]
|
245 |
+
},
|
246 |
+
"Stakeholder Engagement Level Description": {
|
247 |
+
"type": "string",
|
248 |
+
"description": "Degree to which stakeholders are involved in organizational activities or decisions."
|
249 |
+
},
|
250 |
+
"Stakeholder Feedback Mechanisms": {
|
251 |
+
"type": ["string", "null"]
|
252 |
+
},
|
253 |
+
"Stakeholder Feedback Mechanisms Description": {
|
254 |
+
"type": "string",
|
255 |
+
"description": "Systems in place for stakeholders to provide feedback to the organization."
|
256 |
+
},
|
257 |
+
"Identification of Material Issues": {
|
258 |
+
"type": ["string", "null"]
|
259 |
+
},
|
260 |
+
"Identification of Material Issues Description": {
|
261 |
+
"type": "string",
|
262 |
+
"description": "Process of determining the most significant environmental, social, and governance issues relevant to the organization."
|
263 |
+
},
|
264 |
+
"Prioritization of Material Issues": {
|
265 |
+
"type": ["string", "null"]
|
266 |
+
},
|
267 |
+
"Prioritization of Material Issues Description": {
|
268 |
+
"type": "string",
|
269 |
+
"description": "Ranking of identified material issues based on their significance to stakeholders and the organization."
|
270 |
+
},
|
271 |
+
"Double Materiality Assessment": {
|
272 |
+
"type": ["string", "null"]
|
273 |
+
},
|
274 |
+
"Double Materiality Assessment Description": {
|
275 |
+
"type": "string",
|
276 |
+
"description": "Evaluation considering both the organization's impact on sustainability matters and the impact of those matters on the organization."
|
277 |
+
},
|
278 |
+
"Materiality Matrix Development": {
|
279 |
+
"type": ["string", "null"]
|
280 |
+
},
|
281 |
+
"Materiality Matrix Development Description": {
|
282 |
+
"type": "string",
|
283 |
+
"description": "Creation of a visual matrix plotting material issues based on their importance to stakeholders and the organization."
|
284 |
+
},
|
285 |
+
"Regular Review of Material Issues": {
|
286 |
+
"type": ["string", "null"]
|
287 |
+
},
|
288 |
+
"Regular Review of Material Issues Description": {
|
289 |
+
"type": "string",
|
290 |
+
"description": "Frequency and process for updating the assessment of material issues."
|
291 |
+
},
|
292 |
+
"Integration of Material Issues into Strategy": {
|
293 |
+
"type": ["string", "null"]
|
294 |
+
},
|
295 |
+
"Integration of Material Issues into Strategy Description": {
|
296 |
+
"type": "string",
|
297 |
+
"description": "How identified material issues are incorporated into the organization's strategic planning."
|
298 |
+
},
|
299 |
+
"Disclosure of Material Issues": {
|
300 |
+
"type": ["string", "null"]
|
301 |
+
},
|
302 |
+
"Disclosure of Material Issues Description": {
|
303 |
+
"type": "string",
|
304 |
+
"description": "Public reporting on identified material issues and how they are managed."
|
305 |
+
},
|
306 |
+
"Impact Assessment of Material Issues": {
|
307 |
+
"type": ["string", "null"]
|
308 |
+
},
|
309 |
+
"Impact Assessment of Material Issues Description": {
|
310 |
+
"type": "string",
|
311 |
+
"description": "Analysis of the potential or actual impact of material issues on the organization and its stakeholders."
|
312 |
+
}
|
313 |
+
},
|
314 |
+
"required": [
|
315 |
+
"Stakeholder Engagement Level",
|
316 |
+
"Stakeholder Engagement Level Description",
|
317 |
+
"Stakeholder Feedback Mechanisms",
|
318 |
+
"Stakeholder Feedback Mechanisms Description",
|
319 |
+
"Identification of Material Issues",
|
320 |
+
"Identification of Material Issues Description",
|
321 |
+
"Prioritization of Material Issues",
|
322 |
+
"Prioritization of Material Issues Description",
|
323 |
+
"Double Materiality Assessment",
|
324 |
+
"Double Materiality Assessment Description",
|
325 |
+
"Materiality Matrix Development",
|
326 |
+
"Materiality Matrix Development Description",
|
327 |
+
"Regular Review of Material Issues",
|
328 |
+
"Regular Review of Material Issues Description",
|
329 |
+
"Integration of Material Issues into Strategy",
|
330 |
+
"Integration of Material Issues into Strategy Description",
|
331 |
+
"Disclosure of Material Issues",
|
332 |
+
"Disclosure of Material Issues Description",
|
333 |
+
"Impact Assessment of Material Issues",
|
334 |
+
"Impact Assessment of Material Issues Description"
|
335 |
+
],
|
336 |
+
"additionalProperties": False
|
337 |
+
}
|
338 |
+
}
|
339 |
+
},
|
340 |
+
"required": ["company_name", "Greenhouse Gas (GHG) Protocol Parameters", "Net Zero Intervention Parameters", "Materiality Parameters"],
|
341 |
+
"additionalProperties": False
|
342 |
+
}
|
343 |
+
}
|
344 |
+
}
|
345 |
+
|
346 |
+
GEMINI_RESPONSE_FORMAT = {
|
347 |
+
"type": "object",
|
348 |
+
"properties": {
|
349 |
+
"Company Name": {
|
350 |
+
"type": "string",
|
351 |
+
"description": "Name of the company."
|
352 |
+
},
|
353 |
+
"Greenhouse Gas (GHG) Protocol Parameters": {
|
354 |
+
"type": "object",
|
355 |
+
"properties": {
|
356 |
+
"Total GHG Emissions": { "type": "integer", "nullable": True, "description": "Total greenhouse gases emitted by the organization. Units: Metric Tons CO₂e." },
|
357 |
+
"Scope 1 Emissions": { "type": "integer", "nullable": True, "description": "Direct GHG emissions from owned or controlled sources. Units: Metric Tons CO₂e." },
|
358 |
+
"Scope 2 Emissions": { "type": "integer", "nullable": True, "description": "Indirect GHG emissions from the consumption of purchased electricity, steam, heating, and cooling. Units: Metric Tons CO₂e." },
|
359 |
+
"Scope 3 Emissions": { "type": "integer", "nullable": True, "description": "Other indirect emissions occurring in the value chain, including both upstream and downstream emissions. Units: Metric Tons CO₂e." },
|
360 |
+
"CO₂ Emissions": { "type": "integer", "nullable": True, "description": "Emissions of carbon dioxide. Units: Metric Tons CO₂." },
|
361 |
+
"CH₄ Emissions": { "type": "integer", "nullable": True, "description": "Emissions of methane. Units: Metric Tons CH₄." },
|
362 |
+
"N₂O Emissions": { "type": "integer", "nullable": True, "description": "Emissions of nitrous oxide. Units: Metric Tons N₂O." },
|
363 |
+
"HFC Emissions": { "type": "integer", "nullable": True, "description": "Emissions of hydrofluorocarbons. Units: Metric Tons HFCs" },
|
364 |
+
"PFC Emissions": { "type": "integer", "nullable": True, "description": "Emissions of perfluorocarbons. Units: Metric Tons PFCs" },
|
365 |
+
"SF₆ Emissions": { "type": "integer", "nullable": True, "description": "Emissions of sulfur hexafluoride. Units: Metric Tons SF₆." },
|
366 |
+
"NF₃ Emissions": { "type": "integer", "nullable": True, "description": "Emissions of nitrogen trifluoride. Units: Metric Tons NF₃." },
|
367 |
+
"Biogenic CO₂ Emissions": { "type": "integer", "nullable": True, "description": "CO₂ emissions from biological sources. Units: Metric Tons CO₂." },
|
368 |
+
"Emissions Intensity per Revenue": { "type": "number", "nullable": True, "description": "GHG emissions per unit of revenue. Units: Metric Tons CO₂e / Revenue." },
|
369 |
+
"Emissions Intensity per Employee": { "type": "number", "nullable": True, "description": "GHG emissions per employee. Units: Metric Tons CO₂e / Employee." },
|
370 |
+
"Base Year Emissions": { "type": "integer", "nullable": True, "description": "GHG emissions in the base year for comparison. Units: Metric Tons CO₂e." },
|
371 |
+
"Emissions Reduction Target": { "type": "number", "nullable": True, "description": "Targeted percentage reduction in GHG emissions. Units: Percentage (%)." },
|
372 |
+
"Emissions Reduction Achieved": { "type": "number", "nullable": True, "description": "Actual percentage reduction in GHG emissions achieved. Units: Percentage (%)." },
|
373 |
+
"Energy Consumption": { "type": "number", "nullable": True, "description": "Total energy consumed by the organization. Units: MWh or GJ." },
|
374 |
+
"Renewable Energy Consumption": { "type": "number", "nullable": True, "description": "Amount of energy consumed from renewable sources. Units: MWh or GJ." },
|
375 |
+
"Non-Renewable Energy Consumption": { "type": "number", "nullable": True, "description": "Amount of energy consumed from non-renewable sources. Units: MWh or GJ." },
|
376 |
+
"Energy Intensity per Revenue": { "type": "number", "nullable": True, "description": "Energy consumption per unit of revenue. Units: MWh or GJ / Revenue." },
|
377 |
+
"Energy Intensity per Employee": { "type": "number", "nullable": True, "description": "Energy consumption per employee. Units: MWh or GJ / Employee." },
|
378 |
+
"Fuel Consumption": { "type": "number", "nullable": True, "description": "Total fuel consumed by the organization. Units: Liters or GJ." },
|
379 |
+
"Electricity Consumption": { "type": "number", "nullable": True, "description": "Total electricity consumed. Units: MWh." },
|
380 |
+
"Heat Consumption": { "type": "number", "nullable": True, "description": "Total heat energy consumed. Units: GJ." },
|
381 |
+
"Steam Consumption": { "type": "number", "nullable": True, "description": "Total steam energy consumed. Units: GJ." },
|
382 |
+
"Cooling Consumption": { "type": "number", "nullable": True, "description": "Total energy consumed for cooling. Units: GJ." },
|
383 |
+
"Purchased Goods and Services Emissions": { "type": "integer", "nullable": True, "description": "Emissions from purchased goods and services. Units: Metric Tons CO₂e." },
|
384 |
+
"Capital Goods Emissions": { "type": "integer", "nullable": True, "description": "Emissions from the production of capital goods. Units: Metric Tons CO₂e." },
|
385 |
+
"Fuel- and Energy-Related Activities Emissions": { "type": "integer", "nullable": True, "description": "Emissions related to fuel and energy production not included in Scope 1 or 2. Units: Metric Tons CO₂e." },
|
386 |
+
"Upstream Transportation and Distribution Emissions": { "type": "integer", "nullable": True, "description": "Emissions from transportation and distribution in the supply chain. Units: Metric Tons CO₂e." },
|
387 |
+
"Waste Generated in Operations Emissions": { "type": "integer", "nullable": True, "description": "Emissions from waste generated during operations. Units: Metric Tons CO₂e." },
|
388 |
+
"Business Travel Emissions": { "type": "integer", "nullable": True, "description": "Emissions from employee business travel. Units: Metric Tons CO₂e." },
|
389 |
+
"Employee Commuting Emissions": { "type": "integer", "nullable": True, "description": "Emissions from employees commuting to and from work. Units: Metric Tons CO₂e." },
|
390 |
+
"Upstream Leased Assets Emissions": { "type": "integer", "nullable": True, "description": "Emissions from leased assets upstream in the value chain. Units: Metric Tons CO₂e." },
|
391 |
+
"Downstream Transportation and Distribution Emissions": { "type": "integer", "nullable": True, "description": "Emissions from transportation and distribution of sold products. Units: Metric Tons CO₂e." },
|
392 |
+
"Processing of Sold Products Emissions": { "type": "integer", "nullable": True, "description": "Emissions from processing intermediate products sold by the organization. Units: Metric Tons CO₂e." },
|
393 |
+
"Use of Sold Products Emissions": { "type": "integer", "nullable": True, "description": "Emissions from the use of sold products by consumers. Units: Metric Tons CO₂e." },
|
394 |
+
"End-of-Life Treatment of Sold Products Emissions": { "type": "integer", "nullable": True, "description": "Emissions from the disposal of sold products at end of life. Units: Metric Tons CO₂e." },
|
395 |
+
"Downstream Leased Assets Emissions": { "type": "integer", "nullable": True, "description": "Emissions from leased assets downstream in the value chain. Units: Metric Tons CO₂e." },
|
396 |
+
"Franchises Emissions": { "type": "integer", "nullable": True, "description": "Emissions from franchise operations. Units: Metric Tons CO₂e." },
|
397 |
+
"Investments Emissions": { "type": "integer", "nullable": True, "description": "Emissions from investments. Units: Metric Tons CO₂e." },
|
398 |
+
"Carbon Offsets Purchased": { "type": "integer", "nullable": True, "description": "Amount of carbon offsets purchased. Units: Metric Tons CO₂e." },
|
399 |
+
"Net GHG Emissions": { "type": "integer", "nullable": True, "description": "GHG emissions after accounting for offsets. Units: Metric Tons CO₂e." },
|
400 |
+
"Carbon Sequestration": { "type": "integer", "nullable": True, "description": "Amount of CO₂ sequestered or captured. Units: Metric Tons CO₂e." }
|
401 |
+
},
|
402 |
+
"propertyOrdering": [
|
403 |
+
"Total GHG Emissions",
|
404 |
+
"Scope 1 Emissions",
|
405 |
+
"Scope 2 Emissions",
|
406 |
+
"Scope 3 Emissions",
|
407 |
+
"CO₂ Emissions",
|
408 |
+
"CH₄ Emissions",
|
409 |
+
"N₂O Emissions",
|
410 |
+
"HFC Emissions",
|
411 |
+
"PFC Emissions",
|
412 |
+
"SF₆ Emissions",
|
413 |
+
"NF₃ Emissions",
|
414 |
+
"Biogenic CO₂ Emissions",
|
415 |
+
"Emissions Intensity per Revenue",
|
416 |
+
"Emissions Intensity per Employee",
|
417 |
+
"Base Year Emissions",
|
418 |
+
"Emissions Reduction Target",
|
419 |
+
"Emissions Reduction Achieved",
|
420 |
+
"Energy Consumption",
|
421 |
+
"Renewable Energy Consumption",
|
422 |
+
"Non-Renewable Energy Consumption",
|
423 |
+
"Energy Intensity per Revenue",
|
424 |
+
"Energy Intensity per Employee",
|
425 |
+
"Fuel Consumption",
|
426 |
+
"Electricity Consumption",
|
427 |
+
"Heat Consumption",
|
428 |
+
"Steam Consumption",
|
429 |
+
"Cooling Consumption",
|
430 |
+
"Purchased Goods and Services Emissions",
|
431 |
+
"Capital Goods Emissions",
|
432 |
+
"Fuel- and Energy-Related Activities Emissions",
|
433 |
+
"Upstream Transportation and Distribution Emissions",
|
434 |
+
"Waste Generated in Operations Emissions",
|
435 |
+
"Business Travel Emissions",
|
436 |
+
"Employee Commuting Emissions",
|
437 |
+
"Upstream Leased Assets Emissions",
|
438 |
+
"Downstream Transportation and Distribution Emissions",
|
439 |
+
"Processing of Sold Products Emissions",
|
440 |
+
"Use of Sold Products Emissions",
|
441 |
+
"End-of-Life Treatment of Sold Products Emissions",
|
442 |
+
"Downstream Leased Assets Emissions",
|
443 |
+
"Franchises Emissions",
|
444 |
+
"Investments Emissions",
|
445 |
+
"Carbon Offsets Purchased",
|
446 |
+
"Net GHG Emissions",
|
447 |
+
"Carbon Sequestration"
|
448 |
+
]
|
449 |
+
}
|
450 |
+
},
|
451 |
+
"propertyOrdering": ["Company Name", "Greenhouse Gas (GHG) Protocol Parameters"]
|
452 |
+
}
|
application/schemas/schema.xlsx
ADDED
Binary file (55.5 kB). View file
|
|
application/services/gemini_model.py
ADDED
@@ -0,0 +1,299 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import json
|
3 |
+
from google import genai
|
4 |
+
from google.genai import types
|
5 |
+
from pydantic import BaseModel
|
6 |
+
from typing import Optional, Union, BinaryIO
|
7 |
+
from application.utils import logger
|
8 |
+
from application.schemas.response_schema import GEMINI_RESPONSE_FORMAT
|
9 |
+
|
10 |
+
logger = logger.get_logger()
|
11 |
+
|
12 |
+
PROMPT = (
|
13 |
+
"""You are a PDF parsing agent.
|
14 |
+
Your job is to extract from a company’s sustainability or ESG report in PDF format:
|
15 |
+
If the values are not found in the document, please return json null for that value.
|
16 |
+
"""
|
17 |
+
)
|
18 |
+
|
19 |
+
class Parameter(BaseModel):
|
20 |
+
"""
|
21 |
+
A generic class to hold details for a sustainability metric.
|
22 |
+
"""
|
23 |
+
synonym: str
|
24 |
+
uom: str
|
25 |
+
description: str
|
26 |
+
value: str
|
27 |
+
|
28 |
+
class GreenhouseGasGHGProtocolParameters(BaseModel):
|
29 |
+
Total_GHG_Emissions: Parameter
|
30 |
+
Scope_1_Emissions: Parameter
|
31 |
+
Scope_2_Emissions: Parameter
|
32 |
+
Scope_3_Emissions: Parameter
|
33 |
+
CO2_Emissions: Parameter
|
34 |
+
CH4_Emissions: Parameter
|
35 |
+
N2O_Emissions: Parameter
|
36 |
+
HFC_Emissions: Parameter
|
37 |
+
PFC_Emissions: Parameter
|
38 |
+
SF6_Emissions: Parameter
|
39 |
+
NF3_Emissions: Parameter
|
40 |
+
Biogenic_CO2_Emissions: Parameter
|
41 |
+
Emissions_Intensity_per_Revenue: Parameter
|
42 |
+
Emissions_Intensity_per_Employee: Parameter
|
43 |
+
Base_Year_Emissions: Parameter
|
44 |
+
Emissions_Reduction_Target: Parameter
|
45 |
+
Emissions_Reduction_Achieved: Parameter
|
46 |
+
Energy_Consumption: Parameter
|
47 |
+
Renewable_Energy_Consumption: Parameter
|
48 |
+
Non_Renewable_Energy_Consumption: Parameter
|
49 |
+
Energy_Intensity_per_Revenue: Parameter
|
50 |
+
Energy_Intensity_per_Employee: Parameter
|
51 |
+
Fuel_Consumption: Parameter
|
52 |
+
Electricity_Consumption: Parameter
|
53 |
+
Heat_Consumption: Parameter
|
54 |
+
Steam_Consumption: Parameter
|
55 |
+
Cooling_Consumption: Parameter
|
56 |
+
Purchased_Goods_and_Services_Emissions: Parameter
|
57 |
+
Capital_Goods_Emissions: Parameter
|
58 |
+
Fuel_and_Energy_Related_Activities_Emissions: Parameter
|
59 |
+
Upstream_Transportation_and_Distribution_Emissions: Parameter
|
60 |
+
Waste_Generated_in_Operations_Emissions: Parameter
|
61 |
+
Business_Travel_Emissions: Parameter
|
62 |
+
Employee_Commuting_Emissions: Parameter
|
63 |
+
Upstream_Leased_Assets_Emissions: Parameter
|
64 |
+
# Downstream_Transportation_and_Distribution_Emissions: Parameter
|
65 |
+
# Processing_of_Sold_Products_Emissions: Parameter
|
66 |
+
# Use_of_Sold_Products_Emissions: Parameter
|
67 |
+
# End_of_Life_Treatment_of_Sold_Products_Emissions: Parameter
|
68 |
+
# Downstream_Leased_Assets_Emissions: Parameter
|
69 |
+
# Franchises_Emissions: Parameter
|
70 |
+
# Investments_Emissions: Parameter
|
71 |
+
# Carbon_Offsets_Purchased: Parameter
|
72 |
+
# Net_GHG_Emissions: Parameter
|
73 |
+
# Carbon_Sequestration: Parameter
|
74 |
+
|
75 |
+
class EmissionData(BaseModel):
|
76 |
+
GreenhouseGasGHGProtocolParameters: GreenhouseGasGHGProtocolParameters
|
77 |
+
|
78 |
+
# print(json.dumps(EmissionData.model_json_schema(), indent=2))
|
79 |
+
|
80 |
+
def extract_emissions_data_as_json(
|
81 |
+
api: str,
|
82 |
+
model: str,
|
83 |
+
file_input: Union[BinaryIO, bytes]
|
84 |
+
) -> Optional[dict]:
|
85 |
+
"""
|
86 |
+
Extract ESG data from PDF using OpenAI or Gemini APIs.
|
87 |
+
|
88 |
+
Args:
|
89 |
+
api: 'openai' or 'gemini'
|
90 |
+
model: Model name (e.g. gpt-4o, gemini-pro)
|
91 |
+
file_input: File-like object or bytes of the PDF.
|
92 |
+
|
93 |
+
Returns:
|
94 |
+
Parsed ESG data as dict or None if failed.
|
95 |
+
"""
|
96 |
+
try:
|
97 |
+
|
98 |
+
client = genai.Client(api_key=os.getenv("gemini_api_key"))
|
99 |
+
|
100 |
+
file_bytes = file_input.read()
|
101 |
+
logger.info("[Gemini] Sending content for generation...")
|
102 |
+
|
103 |
+
response = client.models.generate_content(
|
104 |
+
model=model,
|
105 |
+
contents=[
|
106 |
+
types.Part.from_bytes(data=file_bytes, mime_type="application/pdf"),
|
107 |
+
PROMPT
|
108 |
+
],
|
109 |
+
config={
|
110 |
+
'response_mime_type': 'application/json',
|
111 |
+
'response_schema': GEMINI_RESPONSE_FORMAT,
|
112 |
+
}
|
113 |
+
)
|
114 |
+
logger.info("[Gemini] Response received.")
|
115 |
+
try:
|
116 |
+
return json.loads(response.text)
|
117 |
+
except json.JSONDecodeError:
|
118 |
+
logger.warning("Failed to parse JSON, returning raw response.")
|
119 |
+
return {"raw_response": response.text}
|
120 |
+
|
121 |
+
except Exception as e:
|
122 |
+
logger.exception(f"Error during ESG data extraction.{e}")
|
123 |
+
return None
|
124 |
+
|
125 |
+
# import os
|
126 |
+
# from google import genai
|
127 |
+
# from pydantic import BaseModel, Field, ValidationError
|
128 |
+
# from dotenv import load_dotenv
|
129 |
+
# from typing import Optional
|
130 |
+
# from google.genai import types
|
131 |
+
|
132 |
+
# load_dotenv()
|
133 |
+
# client = genai.Client(api_key=os.getenv("gemini_api_key"))
|
134 |
+
|
135 |
+
# schema= """{
|
136 |
+
# "parameters": [
|
137 |
+
# {
|
138 |
+
# "parameter": "Total GHG Emissions",
|
139 |
+
# "dataType": "Numeric",
|
140 |
+
# "synonyms": ["Carbon Footprint"],
|
141 |
+
# "uom": "Metric Tons CO₂e",
|
142 |
+
# "description": "Total greenhouse gases emitted by the organization."
|
143 |
+
# },
|
144 |
+
# {
|
145 |
+
# "parameter": "Scope 1 Emissions",
|
146 |
+
# "dataType": "Numeric",
|
147 |
+
# "synonyms": ["Direct Emissions"],
|
148 |
+
# "uom": "Metric Tons CO₂e",
|
149 |
+
# "description": "Direct GHG emissions from owned or controlled sources."
|
150 |
+
# },
|
151 |
+
# {
|
152 |
+
# "parameter": "Scope 2 Emissions",
|
153 |
+
# "dataType": "Numeric",
|
154 |
+
# "synonyms": ["Indirect Energy Emissions"],
|
155 |
+
# "uom": "Metric Tons CO₂e",
|
156 |
+
# "description": "Indirect GHG emissions from the consumption of purchased electricity, steam, heating, and cooling."
|
157 |
+
# },
|
158 |
+
# {
|
159 |
+
# "parameter": "Scope 3 Emissions",
|
160 |
+
# "dataType": "Numeric",
|
161 |
+
# "synonyms": ["Value Chain Emissions"],
|
162 |
+
# "uom": "Metric Tons CO₂e",
|
163 |
+
# "description": "Other indirect emissions occurring in the value chain, including both upstream and downstream emissions."
|
164 |
+
# },
|
165 |
+
# {
|
166 |
+
# "parameter": "CO₂ Emissions",
|
167 |
+
# "dataType": "Numeric",
|
168 |
+
# "synonyms": ["Carbon Emissions"],
|
169 |
+
# "uom": "Metric Tons CO₂",
|
170 |
+
# "description": "Emissions of carbon dioxide."
|
171 |
+
# },
|
172 |
+
# {
|
173 |
+
# "parameter": "CH₄ Emissions",
|
174 |
+
# "dataType": "Numeric",
|
175 |
+
# "synonyms": ["Methane Emissions"],
|
176 |
+
# "uom": "Metric Tons CH₄",
|
177 |
+
# "description": "Emissions of methane."
|
178 |
+
# },
|
179 |
+
# {
|
180 |
+
# "parameter": "N₂O Emissions",
|
181 |
+
# "dataType": "Numeric",
|
182 |
+
# "synonyms": ["Nitrous Oxide Emissions"],
|
183 |
+
# "uom": "Metric Tons N₂O",
|
184 |
+
# "description": "Emissions of nitrous oxide."
|
185 |
+
# },
|
186 |
+
# {
|
187 |
+
# "parameter": "HFC Emissions",
|
188 |
+
# "dataType": "Numeric",
|
189 |
+
# "synonyms": ["Hydrofluorocarbon Emissions"],
|
190 |
+
# "uom": "Metric Tons HFCs",
|
191 |
+
# "description": "Emissions of hydrofluorocarbons."
|
192 |
+
# },
|
193 |
+
# {
|
194 |
+
# "parameter": "PFC Emissions",
|
195 |
+
# "dataType": "Numeric",
|
196 |
+
# "synonyms": ["Perfluorocarbon Emissions"],
|
197 |
+
# "uom": "Metric Tons PFCs",
|
198 |
+
# "description": "Emissions of perfluorocarbons."
|
199 |
+
# },
|
200 |
+
# {
|
201 |
+
# "parameter": "SF₆ Emissions",
|
202 |
+
# "dataType": "Numeric",
|
203 |
+
# "synonyms": ["Sulfur Hexafluoride Emissions"],
|
204 |
+
# "uom": "Metric Tons SF₆",
|
205 |
+
# "description": "Emissions of sulfur hexafluoride."
|
206 |
+
# },
|
207 |
+
# {
|
208 |
+
# "parameter": "NF₃ Emissions",
|
209 |
+
# "dataType": "Numeric",
|
210 |
+
# "synonyms": ["Nitrogen Trifluoride Emissions"],
|
211 |
+
# "uom": "Metric Tons NF₃",
|
212 |
+
# "description": "Emissions of nitrogen trifluoride."
|
213 |
+
# },
|
214 |
+
# {
|
215 |
+
# "parameter": "Biogenic CO₂ Emissions",
|
216 |
+
# "dataType": "Numeric",
|
217 |
+
# "synonyms": ["Biogenic Carbon Emissions"],
|
218 |
+
# "uom": "Metric Tons CO₂",
|
219 |
+
# "description": "CO₂ emissions from biological sources."
|
220 |
+
# },
|
221 |
+
# {
|
222 |
+
# "parameter": "Emissions Intensity per Revenue",
|
223 |
+
# "dataType": "Numeric",
|
224 |
+
# "synonyms": ["Carbon Intensity"],
|
225 |
+
# "uom": "Metric Tons CO₂e / Revenue",
|
226 |
+
# "description": "GHG emissions per unit of revenue."
|
227 |
+
# },
|
228 |
+
# {
|
229 |
+
# "parameter": "Emissions Intensity per Employee",
|
230 |
+
# "dataType": "Numeric",
|
231 |
+
# "synonyms": ["Emissions per Employee"],
|
232 |
+
# "uom": "Metric Tons CO₂e / Employee",
|
233 |
+
# "description": "GHG emissions per employee."
|
234 |
+
# },
|
235 |
+
# {
|
236 |
+
# "parameter": "Base Year Emissions",
|
237 |
+
# "dataType": "Numeric",
|
238 |
+
# "synonyms": ["Baseline Emissions"],
|
239 |
+
# "uom": "Metric Tons CO₂e",
|
240 |
+
# "description": "GHG emissions in the base year for comparison."
|
241 |
+
# },
|
242 |
+
# {
|
243 |
+
# "parameter": "Emissions Reduction Target",
|
244 |
+
# "dataType": "Numeric",
|
245 |
+
# "synonyms": ["Emission Reduction Goal"],
|
246 |
+
# "uom": "Percentage (%)",
|
247 |
+
# "description": "Targeted percentage reduction in GHG emissions."
|
248 |
+
# },
|
249 |
+
# {
|
250 |
+
# "parameter": "Emissions Reduction Achieved",
|
251 |
+
# "dataType": "Numeric",
|
252 |
+
# "synonyms": ["Emission Reduction Accomplished"],
|
253 |
+
# "uom": "Percentage (%)",
|
254 |
+
# "description": "Actual percentage reduction in GHG emissions achieved."
|
255 |
+
# },
|
256 |
+
# {
|
257 |
+
# "parameter": "Energy Consumption",
|
258 |
+
# "dataType": "Numeric",
|
259 |
+
# "synonyms": ["Energy Use"],
|
260 |
+
# "uom": "MWh or GJ",
|
261 |
+
# "description": "Total energy consumed by the organization."
|
262 |
+
# },
|
263 |
+
# {
|
264 |
+
# "parameter": "Renewable Energy Consumption",
|
265 |
+
# "dataType": "Numeric",
|
266 |
+
# "synonyms": ["Green Energy Use"],
|
267 |
+
# "uom": "MWh or GJ",
|
268 |
+
# "description": "Amount of energy consumed from renewable sources."
|
269 |
+
# },
|
270 |
+
# {
|
271 |
+
# "parameter": "Non-Renewable Energy Consumption",
|
272 |
+
# "dataType": "Numeric",
|
273 |
+
# "synonyms": ["Fossil Energy Use"],
|
274 |
+
# "uom": "MWh or GJ",
|
275 |
+
# "description": "Amount of energy consumed from non-renewable sources."
|
276 |
+
# },
|
277 |
+
# {
|
278 |
+
# "parameter": "Carbon Offsets Purchased",
|
279 |
+
# "dataType": "Numeric",
|
280 |
+
# "synonyms": ["Carbon Credits"],
|
281 |
+
# "uom": "Metric Tons CO₂e",
|
282 |
+
# "description": "Amount of carbon offsets purchased."
|
283 |
+
# },
|
284 |
+
# {
|
285 |
+
# "parameter": "Net GHG Emissions",
|
286 |
+
# "dataType": "Numeric",
|
287 |
+
# "synonyms": ["Net Carbon Emissions"],
|
288 |
+
# "uom": "Metric Tons CO₂e",
|
289 |
+
# "description": "GHG emissions after accounting for offsets."
|
290 |
+
# },
|
291 |
+
# {
|
292 |
+
# "parameter": "Carbon Sequestration",
|
293 |
+
# "dataType": "Numeric",
|
294 |
+
# "synonyms": ["Carbon Capture"],
|
295 |
+
# "uom": "Metric Tons CO₂e",
|
296 |
+
# "description": "Amount of CO₂ sequestered or captured."
|
297 |
+
# }
|
298 |
+
# ]
|
299 |
+
# }"""
|
application/services/llm_service.py
ADDED
@@ -0,0 +1,349 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import json
|
3 |
+
from typing import Union, BinaryIO, Optional
|
4 |
+
from openai import OpenAI
|
5 |
+
from google import genai
|
6 |
+
from google.genai import types
|
7 |
+
from application.utils import logger
|
8 |
+
from application.schemas.response_schema import RESPONSE_FORMAT,GEMINI_RESPONSE_FORMAT
|
9 |
+
|
10 |
+
logger = logger.get_logger()
|
11 |
+
client = OpenAI()
|
12 |
+
|
13 |
+
# --- Constants ---
|
14 |
+
|
15 |
+
PROMPT = (
|
16 |
+
"You are a PDF parsing agent. "
|
17 |
+
"Your job is to extract GHG Protocol Parameters and ESG (Environmental, Social, Governance) Data "
|
18 |
+
"from a company’s sustainability or ESG report in PDF format."
|
19 |
+
)
|
20 |
+
|
21 |
+
# --- OpenAI Helpers ---
|
22 |
+
|
23 |
+
def get_files() -> list:
|
24 |
+
"""Retrieve all files from OpenAI client."""
|
25 |
+
try:
|
26 |
+
files = client.files.list()
|
27 |
+
logger.info(f"Retrieved {len(files.data)} files.")
|
28 |
+
return files.data
|
29 |
+
except Exception as e:
|
30 |
+
logger.error(f"Failed to retrieve files: {e}")
|
31 |
+
raise
|
32 |
+
|
33 |
+
def get_or_create_file(file_input: BinaryIO, client) -> object:
|
34 |
+
"""
|
35 |
+
Retrieve a file from OpenAI by name or upload it if not present.
|
36 |
+
|
37 |
+
Args:
|
38 |
+
file_input: File-like object with `.name` attribute.
|
39 |
+
client: OpenAI client instance.
|
40 |
+
|
41 |
+
Returns:
|
42 |
+
File object.
|
43 |
+
"""
|
44 |
+
file_name = getattr(file_input, 'name', None)
|
45 |
+
if not file_name:
|
46 |
+
raise ValueError("File input must have a 'name' attribute.")
|
47 |
+
|
48 |
+
try:
|
49 |
+
for file in get_files():
|
50 |
+
if file.filename == file_name:
|
51 |
+
logger.info(f"File '{file_name}' already exists with ID: {file.id}")
|
52 |
+
return client.files.retrieve(file.id)
|
53 |
+
|
54 |
+
logger.info(f"Uploading new file '{file_name}'...")
|
55 |
+
new_file = client.files.create(file=(file_name, file_input), purpose="assistants")
|
56 |
+
logger.info(f"File uploaded successfully with ID: {new_file.id}")
|
57 |
+
return new_file
|
58 |
+
|
59 |
+
except Exception as e:
|
60 |
+
logger.error(f"Error during get_or_create_file: {e}")
|
61 |
+
raise
|
62 |
+
|
63 |
+
def delete_file_by_size(size: int, client):
|
64 |
+
"""
|
65 |
+
Deletes files from OpenAI that match a given byte size.
|
66 |
+
|
67 |
+
Args:
|
68 |
+
size: File size in bytes to match for deletion.
|
69 |
+
client: OpenAI client instance.
|
70 |
+
"""
|
71 |
+
try:
|
72 |
+
files = get_files()
|
73 |
+
for file in files:
|
74 |
+
if file.bytes == size:
|
75 |
+
client.files.delete(file.id)
|
76 |
+
logger.info(f"File {file.filename} deleted (size matched: {size} bytes).")
|
77 |
+
else:
|
78 |
+
logger.info(f"File {file.filename} skipped (size mismatch).")
|
79 |
+
except Exception as e:
|
80 |
+
logger.error(f"Failed to delete files: {e}")
|
81 |
+
raise
|
82 |
+
|
83 |
+
# --- Main Function ---
|
84 |
+
|
85 |
+
def extract_emissions_data_as_json(
|
86 |
+
api: str,
|
87 |
+
model: str,
|
88 |
+
file_input: Union[BinaryIO, bytes]
|
89 |
+
) -> Optional[dict]:
|
90 |
+
"""
|
91 |
+
Extract ESG data from PDF using OpenAI or Gemini APIs.
|
92 |
+
|
93 |
+
Args:
|
94 |
+
api: 'openai' or 'gemini'
|
95 |
+
model: Model name (e.g. gpt-4o, gemini-pro)
|
96 |
+
file_input: File-like object or bytes of the PDF.
|
97 |
+
|
98 |
+
Returns:
|
99 |
+
Parsed ESG data as dict or None if failed.
|
100 |
+
"""
|
101 |
+
try:
|
102 |
+
if api.lower() == "openai":
|
103 |
+
client = OpenAI()
|
104 |
+
file = get_or_create_file(file_input, client)
|
105 |
+
|
106 |
+
logger.info("[OpenAI] Sending content for generation...")
|
107 |
+
|
108 |
+
response = client.chat.completions.create(
|
109 |
+
model=model,
|
110 |
+
messages=[{
|
111 |
+
"role": "user",
|
112 |
+
"content": [
|
113 |
+
{"type": "file", "file": {"file_id": file.id}},
|
114 |
+
{"type": "text", "text": PROMPT}
|
115 |
+
]
|
116 |
+
}],
|
117 |
+
response_format=RESPONSE_FORMAT
|
118 |
+
)
|
119 |
+
|
120 |
+
result = response.choices[0].message.content
|
121 |
+
logger.info("ESG data extraction successful.")
|
122 |
+
return result
|
123 |
+
|
124 |
+
elif api.lower() == "gemini":
|
125 |
+
client = genai.Client(api_key=os.getenv("gemini_api_key"))
|
126 |
+
|
127 |
+
file_bytes = file_input.read()
|
128 |
+
logger.info("[Gemini] Sending content for generation...")
|
129 |
+
|
130 |
+
response = client.models.generate_content(
|
131 |
+
model=model,
|
132 |
+
contents=[
|
133 |
+
types.Part.from_bytes(data=file_bytes, mime_type="application/pdf"),
|
134 |
+
PROMPT
|
135 |
+
],
|
136 |
+
config={
|
137 |
+
'response_mime_type': 'application/json',
|
138 |
+
'response_schema': GEMINI_RESPONSE_FORMAT,
|
139 |
+
}
|
140 |
+
)
|
141 |
+
logger.info("[Gemini] Response received.")
|
142 |
+
try:
|
143 |
+
return json.loads(response.text)
|
144 |
+
except json.JSONDecodeError:
|
145 |
+
logger.warning("Failed to parse JSON, returning raw response.")
|
146 |
+
return {"raw_response": response.text}
|
147 |
+
else:
|
148 |
+
logger.error(f"Unsupported API: {api}")
|
149 |
+
return None
|
150 |
+
|
151 |
+
except Exception as e:
|
152 |
+
logger.exception("Error during ESG data extraction.")
|
153 |
+
return None
|
154 |
+
|
155 |
+
# --- Debug Helper ---
|
156 |
+
|
157 |
+
def list_all_files():
|
158 |
+
"""Lists all files currently uploaded to OpenAI."""
|
159 |
+
try:
|
160 |
+
files = get_files()
|
161 |
+
for file in files:
|
162 |
+
logger.info(f"File ID: {file.id}, Name: {file.filename}, Size: {file.bytes} bytes")
|
163 |
+
except Exception as e:
|
164 |
+
logger.error(f"Failed to list files: {e}")
|
165 |
+
|
166 |
+
|
167 |
+
|
168 |
+
|
169 |
+
|
170 |
+
|
171 |
+
|
172 |
+
|
173 |
+
|
174 |
+
|
175 |
+
|
176 |
+
|
177 |
+
|
178 |
+
|
179 |
+
|
180 |
+
# import os
|
181 |
+
# import json
|
182 |
+
# from google import genai
|
183 |
+
# from google.genai import types
|
184 |
+
# from openai import OpenAI
|
185 |
+
# from dotenv import load_dotenv
|
186 |
+
# from application.utils import logger
|
187 |
+
# import pandas as pd
|
188 |
+
# import openpyxl
|
189 |
+
|
190 |
+
# load_dotenv()
|
191 |
+
# logger = logger.get_logger()
|
192 |
+
|
193 |
+
|
194 |
+
|
195 |
+
# def load_schema_from_excel(file_path) -> str:
|
196 |
+
# df = pd.read_excel(file_path,engine='openpyxl')
|
197 |
+
|
198 |
+
# schema_lines = ["Schema fields and expected format:\n"]
|
199 |
+
# for _, row in df.iterrows():
|
200 |
+
# field = row.get("Field", "")
|
201 |
+
# description = row.get("Description", "")
|
202 |
+
# example = row.get("Example", "")
|
203 |
+
# schema_lines.append(f"- {field}: {description} (e.g., {example})")
|
204 |
+
|
205 |
+
# return "\n".join(schema_lines)
|
206 |
+
|
207 |
+
# schema_text = load_schema_from_excel("application/schemas/schema.xlsx")
|
208 |
+
|
209 |
+
# # print(schema_text)
|
210 |
+
|
211 |
+
# PROMPT = (f"""You are a PDF parsing agent. Your job is to extract GHG Protocol Parameters and ESG (Environmental, Social, Governance) Data from a company’s sustainability or ESG report in PDF format.
|
212 |
+
# Please return the response as raw JSON without markdown formatting (no triple backticks or json tags) using the following fields:
|
213 |
+
# Total GHG emissions (Metric Tons CO₂e)
|
214 |
+
# Scope 1, 2, and 3 emissions
|
215 |
+
# Emissions by gas (CO₂, CH₄, N₂O, HFCs, etc.)
|
216 |
+
# Energy and fuel consumption (MWh, GJ, Liters)
|
217 |
+
# Carbon offsets, intensity metrics, and reduction targets
|
218 |
+
# ESG disclosures including:
|
219 |
+
# Environmental Policies
|
220 |
+
# Whether the company has an Environmental Management System (EMS)
|
221 |
+
# Environmental certifications (if any)
|
222 |
+
# Ensure values include their units, are extracted accurately, and the fields match the schema provided below and If the value is zero replace it with null:
|
223 |
+
|
224 |
+
# {schema_text}
|
225 |
+
|
226 |
+
# """)
|
227 |
+
|
228 |
+
# def extract_emissions_data_as_json(api, model, file_input):
|
229 |
+
|
230 |
+
# if api.lower()=="openai":
|
231 |
+
|
232 |
+
# client = OpenAI()
|
233 |
+
|
234 |
+
# file = client.files.create(
|
235 |
+
# file=("uploaded.pdf", file_input),
|
236 |
+
# purpose="assistants"
|
237 |
+
# )
|
238 |
+
|
239 |
+
# completion = client.chat.completions.create(
|
240 |
+
# model=model,
|
241 |
+
# messages=[
|
242 |
+
# {
|
243 |
+
# "role": "user",
|
244 |
+
# "content": [
|
245 |
+
# {
|
246 |
+
# "type": "file",
|
247 |
+
# "file": {
|
248 |
+
# "file_id": file.id,
|
249 |
+
# }
|
250 |
+
# },
|
251 |
+
# {
|
252 |
+
# "type": "text",
|
253 |
+
# "text":PROMPT,
|
254 |
+
# },
|
255 |
+
# ]
|
256 |
+
# }
|
257 |
+
# ]
|
258 |
+
# )
|
259 |
+
|
260 |
+
# try:
|
261 |
+
# return json.loads(completion.choices[0].message.content)
|
262 |
+
# except json.JSONDecodeError:
|
263 |
+
# logger.error("Warning: Output was not valid JSON.")
|
264 |
+
# return {"raw_response": completion.choices[0].message.content}
|
265 |
+
|
266 |
+
# if api.lower()=="gemini":
|
267 |
+
|
268 |
+
# client = genai.Client(api_key=os.getenv('gemini_api_key'))
|
269 |
+
|
270 |
+
# file_bytes= file_input.read()
|
271 |
+
# response = client.models.generate_content(
|
272 |
+
# model=model,
|
273 |
+
# contents=[
|
274 |
+
# types.Part.from_bytes(
|
275 |
+
# data=file_bytes,
|
276 |
+
# mime_type='application/pdf',
|
277 |
+
# ),
|
278 |
+
# PROMPT])
|
279 |
+
|
280 |
+
# try:
|
281 |
+
# return json.loads(response.text)
|
282 |
+
# except json.JSONDecodeError:
|
283 |
+
# return {"raw_response": response.text}
|
284 |
+
|
285 |
+
|
286 |
+
|
287 |
+
# # {
|
288 |
+
# # "type": "object",
|
289 |
+
# # "properties": {
|
290 |
+
# # "GHG_Protocol_Parameters": {
|
291 |
+
# # "type": "object",
|
292 |
+
# # "properties": {
|
293 |
+
# # "Total_GHG_Emissions": { "type": "number" },
|
294 |
+
# # "Scope_1_Emissions": { "type": "number" },
|
295 |
+
# # "Scope_2_Emissions": { "type": "number" },
|
296 |
+
# # "Scope_3_Emissions": { "type": "number" },
|
297 |
+
# # "CO2_Emissions": { "type": "number" },
|
298 |
+
# # "CH4_Emissions": { "type": "number" },
|
299 |
+
# # "N2O_Emissions": { "type": "number" },
|
300 |
+
# # "HFC_Emissions": { "type": "number" },
|
301 |
+
# # "PFC_Emissions": { "type": "number" },
|
302 |
+
# # "SF6_Emissions": { "type": "number" },
|
303 |
+
# # "NF3_Emissions": { "type": "number" },
|
304 |
+
# # "Biogenic_CO2_Emissions": { "type": "number" },
|
305 |
+
# # "Emissions_Intensity_per_Revenue": { "type": "number" },
|
306 |
+
# # "Emissions_Intensity_per_Employee": { "type": "number" },
|
307 |
+
# # "Base_Year_Emissions": { "type": "number" },
|
308 |
+
# # "Emissions_Reduction_Target": { "type": "number" },
|
309 |
+
# # "Emissions_Reduction_Achieved": { "type": "number" },
|
310 |
+
# # "Energy_Consumption": { "type": "number" },
|
311 |
+
# # "Renewable_Energy_Consumption": { "type": "number" },
|
312 |
+
# # "Non_Renewable_Energy_Consumption": { "type": "number" },
|
313 |
+
# # "Energy_Intensity_per_Revenue": { "type": "number" },
|
314 |
+
# # "Energy_Intensity_per_Employee": { "type": "number" },
|
315 |
+
# # "Fuel_Consumption": { "type": "number" },
|
316 |
+
# # "Electricity_Consumption": { "type": "number" },
|
317 |
+
# # "Heat_Consumption": { "type": "number" },
|
318 |
+
# # "Steam_Consumption": { "type": "number" },
|
319 |
+
# # "Cooling_Consumption": { "type": "number" },
|
320 |
+
# # "Purchased_Goods_and_Services_Emissions": { "type": "number" },
|
321 |
+
# # "Capital_Goods_Emissions": { "type": "number" },
|
322 |
+
# # "Fuel_and_Energy_Related_Activities_Emissions": { "type": "number" },
|
323 |
+
# # "Upstream_Transportation_and_Distribution_Emissions": { "type": "number" },
|
324 |
+
# # "Waste_Generated_in_Operations_Emissions": { "type": "number" },
|
325 |
+
# # "Business_Travel_Emissions": { "type": "number" },
|
326 |
+
# # "Employee_Commuting_Emissions": { "type": "number" },
|
327 |
+
# # "Upstream_Leased_Assets_Emissions": { "type": "number" },
|
328 |
+
# # "Downstream_Transportation_and_Distribution_Emissions": { "type": "number" },
|
329 |
+
# # "Processing_of_Sold_Products_Emissions": { "type": "number" },
|
330 |
+
# # "Use_of_Sold_Products_Emissions": { "type": "number" },
|
331 |
+
# # "End_of_Life_Treatment_of_Sold_Products_Emissions": { "type": "number" },
|
332 |
+
# # "Downstream_Leased_Assets_Emissions": { "type": "number" },
|
333 |
+
# # "Franchises_Emissions": { "type": "number" },
|
334 |
+
# # "Investments_Emissions": { "type": "number" },
|
335 |
+
# # "Carbon_Offsets_Purchased": { "type": "number" },
|
336 |
+
# # "Net_GHG_Emissions": { "type": "number" },
|
337 |
+
# # "Carbon_Sequestration": { "type": "number" }
|
338 |
+
# # }
|
339 |
+
# # },
|
340 |
+
# # "ESG_Parameters_CSRS": {
|
341 |
+
# # "type": "object",
|
342 |
+
# # "properties": {
|
343 |
+
# # "Environmental_Policies": { "type": "string" },
|
344 |
+
# # "Environmental_Management_System": { "type": "boolean" },
|
345 |
+
# # "Environmental_Certifications": { "type": "string" }
|
346 |
+
# # }
|
347 |
+
# # }
|
348 |
+
# # },
|
349 |
+
# # "required": ["GHG_Protocol_Parameters", "ESG_Parameters_CSRS"]}
|
application/services/openai_model.py
ADDED
@@ -0,0 +1,251 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# from pydantic import BaseModel
|
2 |
+
# from openai import OpenAI
|
3 |
+
# from typing import List, Dict, Optional, Union
|
4 |
+
|
5 |
+
# client = OpenAI()
|
6 |
+
|
7 |
+
# class GHGParameter(BaseModel):
|
8 |
+
# parameter: str
|
9 |
+
# data_type: str
|
10 |
+
# synonyms: Optional[List[str]] = None
|
11 |
+
# uom: Optional[str] = None
|
12 |
+
# description: Optional[str] = None
|
13 |
+
# value: Union[int, str, None]
|
14 |
+
|
15 |
+
|
16 |
+
# class GHGCategory(BaseModel):
|
17 |
+
# category: str
|
18 |
+
# parameters: List[GHGParameter]
|
19 |
+
|
20 |
+
# SCHEMA = """{
|
21 |
+
# "Gas (GHG)": {
|
22 |
+
# "Total GHG Emissions": {
|
23 |
+
# "data_type": "Numeric",
|
24 |
+
# "synonyms": ["Carbon Footprint"],
|
25 |
+
# "uom": "Metric Tons CO₂e",
|
26 |
+
# "description": "Total greenhouse gases emitted by the organization.",
|
27 |
+
# "value": null
|
28 |
+
# }"""
|
29 |
+
|
30 |
+
# PROMPT = (f"""You are a PDF parsing agent.
|
31 |
+
# Fetch the following data from pdf : {SCHEMA}"""
|
32 |
+
# )
|
33 |
+
|
34 |
+
# def extract_emissions_data_as_json(api, model, file_input):
|
35 |
+
# if api.lower() == "openai":
|
36 |
+
# file = client.files.create(
|
37 |
+
# file=("uploaded.pdf", file_input),
|
38 |
+
# purpose="assistants"
|
39 |
+
# )
|
40 |
+
|
41 |
+
# completion = client.beta.chat.completions.parse(
|
42 |
+
# model="gpt-4o-2024-08-06",
|
43 |
+
# messages=[
|
44 |
+
# {
|
45 |
+
# "role": "user",
|
46 |
+
# "content": [
|
47 |
+
# {
|
48 |
+
# "type": "file",
|
49 |
+
# "file": {
|
50 |
+
# "file_id": file.id,
|
51 |
+
# }
|
52 |
+
# },
|
53 |
+
# {
|
54 |
+
# "type": "text",
|
55 |
+
# "text":PROMPT,
|
56 |
+
# },
|
57 |
+
# ]
|
58 |
+
# }
|
59 |
+
# ],
|
60 |
+
# response_format=GHGCategory,
|
61 |
+
# )
|
62 |
+
|
63 |
+
# research_paper = completion.choices[0].message.parsed
|
64 |
+
# return research_paper
|
65 |
+
|
66 |
+
# from pydantic import BaseModel
|
67 |
+
# from openai import OpenAI
|
68 |
+
|
69 |
+
# client = OpenAI()
|
70 |
+
|
71 |
+
# class CalendarEvent(BaseModel):
|
72 |
+
# name: str
|
73 |
+
# date: str
|
74 |
+
# participants: list[str]
|
75 |
+
|
76 |
+
# def extract_emissions_data_as_json(api, model, file_input):
|
77 |
+
# if api.lower() == "openai":
|
78 |
+
# file = client.files.create(
|
79 |
+
# file=("uploaded.pdf", file_input),
|
80 |
+
# purpose="assistants"
|
81 |
+
# )
|
82 |
+
|
83 |
+
# completion = client.beta.chat.completions.parse(
|
84 |
+
# model="gpt-4o-2024-08-06",
|
85 |
+
# messages=[
|
86 |
+
# {
|
87 |
+
# "role": "user",
|
88 |
+
# "content": [
|
89 |
+
# {
|
90 |
+
# "type": "file",
|
91 |
+
# "file": {
|
92 |
+
# "file_id": file.id,
|
93 |
+
# }
|
94 |
+
# },
|
95 |
+
# {
|
96 |
+
# "type": "text",
|
97 |
+
# "text":PROMPT,
|
98 |
+
# },
|
99 |
+
# ]
|
100 |
+
# }
|
101 |
+
# ],
|
102 |
+
# response_format=GHGCategory,
|
103 |
+
# )
|
104 |
+
|
105 |
+
# event = completion.choices[0].message.parsed
|
106 |
+
|
107 |
+
# response = client.chat.completions.create(
|
108 |
+
# model="gpt-4o-2024-08-06",
|
109 |
+
# messages=[
|
110 |
+
# {"role": "system", "content": "You are a helpful math tutor. Guide the user through the solution step by step."},
|
111 |
+
# {"role": "user", "content": "how can I solve 8x + 7 = -23"}
|
112 |
+
# ],
|
113 |
+
# response_format={
|
114 |
+
# "type": "json_schema",
|
115 |
+
# "json_schema": {
|
116 |
+
# "name": "GHGCategory",
|
117 |
+
# "schema": {
|
118 |
+
# "type": "object",
|
119 |
+
# "properties": {
|
120 |
+
# "steps": {
|
121 |
+
# "type": "array",
|
122 |
+
# "items": {
|
123 |
+
# "type": "object",
|
124 |
+
# "properties": {
|
125 |
+
# "explanation": {"type": "string"},
|
126 |
+
# "output": {"type": "string"}
|
127 |
+
# },
|
128 |
+
# "required": ["explanation", "output"],
|
129 |
+
# "additionalProperties": False
|
130 |
+
# }
|
131 |
+
# },
|
132 |
+
# "final_answer": {"type": "string"}
|
133 |
+
# },
|
134 |
+
# "required": ["steps", "final_answer"],
|
135 |
+
# "additionalProperties": False
|
136 |
+
# },
|
137 |
+
# "strict": True
|
138 |
+
# }
|
139 |
+
# }
|
140 |
+
# )
|
141 |
+
|
142 |
+
# print(response.choices[0].message.content)
|
143 |
+
|
144 |
+
|
145 |
+
# response = await async_client.responses.create(
|
146 |
+
# model="gpt-4o",
|
147 |
+
# input=[
|
148 |
+
# {
|
149 |
+
# "role": "user",
|
150 |
+
# "content": [
|
151 |
+
# {
|
152 |
+
# "type": "input_file",
|
153 |
+
# "file_id": uploaded_file.id,
|
154 |
+
# },
|
155 |
+
# {
|
156 |
+
# "type": "input_text",
|
157 |
+
# "text": """
|
158 |
+
# You are an intelligent PDF data extractor designed to extract structured information from Brand Books. A Brand Book contains guidelines and details about a brand's identity, including its logo, colors, typography, messaging, and more.
|
159 |
+
# Ensure the extracted data follows this schema strictly.
|
160 |
+
# Return the extracted brand information in JSON format with no explaination.
|
161 |
+
# For brand_logo and favicon, always provide a direct URL to the image instead of just the image name or a placeholder. If no valid URLs are found, return an empty array. """
|
162 |
+
# }
|
163 |
+
# ]
|
164 |
+
# }
|
165 |
+
# ],
|
166 |
+
# text={
|
167 |
+
# "format": {
|
168 |
+
# "type": "json_schema",
|
169 |
+
# "name": "BrandBook",
|
170 |
+
# "strict": True,
|
171 |
+
# "schema": {
|
172 |
+
# "type": "object",
|
173 |
+
# "properties": {
|
174 |
+
# "brand_url": {
|
175 |
+
# "type": "string",
|
176 |
+
# "description": "The URL associated with the brand."
|
177 |
+
# },
|
178 |
+
# "brand_name": {
|
179 |
+
# "type": "string",
|
180 |
+
# "description": "The name of the brand."
|
181 |
+
# },
|
182 |
+
# "brand_category": {
|
183 |
+
# "type": "array",
|
184 |
+
# "description": "A list of categories that the brand belongs to.",
|
185 |
+
# "items": {
|
186 |
+
# "type": "string"
|
187 |
+
# }
|
188 |
+
# },
|
189 |
+
# "brand_description": {
|
190 |
+
# "type": "string",
|
191 |
+
# "description": "A brief description of the brand."
|
192 |
+
# },
|
193 |
+
# "brand_colors": {
|
194 |
+
# "type": "array",
|
195 |
+
# "description": "A list of colors associated with the brand.",
|
196 |
+
# "items": {
|
197 |
+
# "type": "string"
|
198 |
+
# }
|
199 |
+
# },
|
200 |
+
# "brand_fonts": {
|
201 |
+
# "type": "array",
|
202 |
+
# "description": "A list of fonts used by the brand.",
|
203 |
+
# "items": {
|
204 |
+
# "type": "string"
|
205 |
+
# }
|
206 |
+
# },
|
207 |
+
# "brand_logo": {
|
208 |
+
# "type": "array",
|
209 |
+
# "description": "A list of logo urls associated with the brand.",
|
210 |
+
# "items": {
|
211 |
+
# "type": "string"
|
212 |
+
# }
|
213 |
+
# },
|
214 |
+
# "target_audience": {
|
215 |
+
# "type": "string",
|
216 |
+
# "description": "The target audience for the brand."
|
217 |
+
# },
|
218 |
+
# "competitors": {
|
219 |
+
# "type": "string",
|
220 |
+
# "description": "The competitors of the brand."
|
221 |
+
# },
|
222 |
+
# "aspirational_brands": {
|
223 |
+
# "type": "string",
|
224 |
+
# "description": "Brands that the brand aspires to be like."
|
225 |
+
# },
|
226 |
+
# "favicon": {
|
227 |
+
# "type": "array",
|
228 |
+
# "description": "A list of favicon URLs associated with the brand.",
|
229 |
+
# "items": {
|
230 |
+
# "type": "string"
|
231 |
+
# }
|
232 |
+
# }
|
233 |
+
# },
|
234 |
+
# "required": [
|
235 |
+
# "brand_url",
|
236 |
+
# "brand_name",
|
237 |
+
# "brand_category",
|
238 |
+
# "brand_description",
|
239 |
+
# "brand_colors",
|
240 |
+
# "brand_fonts",
|
241 |
+
# "brand_logo",
|
242 |
+
# "target_audience",
|
243 |
+
# "competitors",
|
244 |
+
# "aspirational_brands",
|
245 |
+
# "favicon"
|
246 |
+
# ],
|
247 |
+
# "additionalProperties": False
|
248 |
+
# }
|
249 |
+
# }
|
250 |
+
# }
|
251 |
+
# )
|
application/services/streamlit_function.py
ADDED
@@ -0,0 +1,89 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
from typing import Union, List
|
3 |
+
from application.utils import logger
|
4 |
+
|
5 |
+
logger = logger.get_logger()
|
6 |
+
|
7 |
+
PAGE_TITLE = "PDF Extractor"
|
8 |
+
PAGE_LAYOUT = "wide"
|
9 |
+
# PAGE_ICON = "src/frontend/images/page_icon.jpg"
|
10 |
+
# GITHUB_LINK = "https://github.com/Vela-Test1993/yuvabe-care-companion-ai"
|
11 |
+
# ABOUT_US = "An AI-powered assistant for personalized healthcare guidance."
|
12 |
+
|
13 |
+
|
14 |
+
def config_homepage(page_title=PAGE_TITLE):
|
15 |
+
"""
|
16 |
+
Configures the Streamlit homepage with essential settings.
|
17 |
+
|
18 |
+
This function sets up the page title, icon, layout, and sidebar state.
|
19 |
+
It also defines custom menu items for better navigation.
|
20 |
+
|
21 |
+
Args:
|
22 |
+
page_title (str): The title displayed on the browser tab (default is PAGE_TITLE).
|
23 |
+
|
24 |
+
Key Features:
|
25 |
+
- Ensures `st.set_page_config()` is called only once to avoid errors.
|
26 |
+
- Uses constants for improved maintainability and consistency.
|
27 |
+
- Provides links for help, bug reporting, and an 'About' section.
|
28 |
+
|
29 |
+
Example:
|
30 |
+
>>> config_homepage("My Custom App")
|
31 |
+
"""
|
32 |
+
if "page_config_set" not in st.session_state:
|
33 |
+
st.set_page_config(
|
34 |
+
page_title=page_title,
|
35 |
+
# page_icon=PAGE_ICON,
|
36 |
+
layout=PAGE_LAYOUT,
|
37 |
+
initial_sidebar_state="collapsed",
|
38 |
+
# menu_items={
|
39 |
+
# "Get help": GITHUB_LINK,
|
40 |
+
# "Report a bug": GITHUB_LINK,
|
41 |
+
# "About": ABOUT_US
|
42 |
+
# }
|
43 |
+
)
|
44 |
+
# st.session_state.page_config_set = True
|
45 |
+
|
46 |
+
def upload_file(
|
47 |
+
file_types: Union[str, List[str]] = "pdf",
|
48 |
+
label: str = "📤 Upload a file",
|
49 |
+
help_text: str = "Upload your file for processing.",
|
50 |
+
allow_multiple: bool = False,
|
51 |
+
):
|
52 |
+
"""
|
53 |
+
Streamlit file uploader widget with options.
|
54 |
+
|
55 |
+
Args:
|
56 |
+
file_types (str or list): Allowed file type(s), e.g., "pdf" or ["pdf", "docx"].
|
57 |
+
label (str): Label displayed above the uploader.
|
58 |
+
help_text (str): Tooltip help text.
|
59 |
+
allow_multiple (bool): Allow multiple file uploads.
|
60 |
+
|
61 |
+
Returns:
|
62 |
+
Uploaded file(s): A single file object or a list of file objects.
|
63 |
+
"""
|
64 |
+
if isinstance(file_types, str):
|
65 |
+
file_types = [file_types]
|
66 |
+
|
67 |
+
uploaded_files = st.file_uploader(
|
68 |
+
label=label,
|
69 |
+
type=file_types,
|
70 |
+
help=help_text,
|
71 |
+
accept_multiple_files=allow_multiple
|
72 |
+
)
|
73 |
+
|
74 |
+
if st.button("Submit"):
|
75 |
+
st.session_state.pdf_file = uploaded_files
|
76 |
+
return uploaded_files
|
77 |
+
|
78 |
+
# def extract_text_from_pdf(file) -> str:
|
79 |
+
# """
|
80 |
+
# Extracts and returns the full text content from a PDF file.
|
81 |
+
|
82 |
+
# :param file: PDF file object (BytesIO or UploadedFile from Streamlit)
|
83 |
+
# :return: Extracted text as a string
|
84 |
+
# """
|
85 |
+
# text = ""
|
86 |
+
# with fitz.open(stream=file.read(), filetype="pdf") as doc:
|
87 |
+
# for page in doc:
|
88 |
+
# text += page.get_text()
|
89 |
+
# return text.strip()
|
application/utils/logger.py
ADDED
@@ -0,0 +1,35 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import logging
|
2 |
+
from logging.handlers import RotatingFileHandler
|
3 |
+
import os
|
4 |
+
|
5 |
+
log_file = 'eco_scribe.log'
|
6 |
+
log_dir = 'logs/app'
|
7 |
+
log_level=logging.INFO
|
8 |
+
|
9 |
+
def get_logger( ):
|
10 |
+
|
11 |
+
if not os.path.exists(log_dir):
|
12 |
+
os.makedirs(log_dir)
|
13 |
+
|
14 |
+
log_file_path = os.path.join(log_dir, log_file)
|
15 |
+
|
16 |
+
logger = logging.getLogger(__name__)
|
17 |
+
|
18 |
+
if not logger.hasHandlers():
|
19 |
+
logger.setLevel(log_level)
|
20 |
+
|
21 |
+
console_handler = logging.StreamHandler()
|
22 |
+
console_handler.setLevel(logging.DEBUG)
|
23 |
+
|
24 |
+
file_handler = RotatingFileHandler(log_file_path, maxBytes=5*1024*1024, backupCount=3)
|
25 |
+
file_handler.setLevel(logging.INFO)
|
26 |
+
|
27 |
+
log_format = '%(asctime)s - %(levelname)s - %(message)s'
|
28 |
+
formatter = logging.Formatter(log_format, datefmt='%Y-%m-%d %H:%M')
|
29 |
+
console_handler.setFormatter(formatter)
|
30 |
+
file_handler.setFormatter(formatter)
|
31 |
+
|
32 |
+
logger.addHandler(console_handler)
|
33 |
+
logger.addHandler(file_handler)
|
34 |
+
|
35 |
+
return logger
|
requirements.txt
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
streamlit
|
2 |
+
openai
|
3 |
+
dotenv
|
4 |
+
google
|
5 |
+
google.genai
|
6 |
+
google-generativeai
|
7 |
+
pymupdf
|
8 |
+
openpyxl
|
9 |
+
pandas
|
test.py
ADDED
File without changes
|