PredictionHub / src /modules /logistic_regression.py
Vela
Modified Project
e10ddaa
raw
history blame
1.52 kB
# import pandas as pd
# from sklearn.model_selection import train_test_split
# from sklearn.linear_model import LogisticRegression
# from sklearn.metrics import accuracy_score, classification_report
# import numpy as np
# import os
# import sys
# src_directory = os.path.abspath(os.path.join(os.path.dirname(__file__), "../..", "src"))
# sys.path.append(src_directory)
# from data import sample_data
# from modules import encoding_model
# file_path = r"src/data/sms_process_data_main.xlsx"
# df = sample_data.get_data_frame(file_path)
# def get_label(message):
# from sentence_transformers import SentenceTransformer
# # model = SentenceTransformer('Alibaba-NLP/gte-base-en-v1.5', trust_remote_code=True)
# X_train, X_test, y_train, y_test = train_test_split(df['MessageText'], df['label'], test_size=0.2, random_state=42)
# X_train_embeddings = encoding_model.model.encode(X_train.tolist())
# models = LogisticRegression(max_iter=100)
# models.fit(X_train_embeddings, y_train)
# new_embeddings = encoding_model.model.encode(message)
# no_of_dimention = len(new_embeddings)
# array = np.array(new_embeddings).tolist()
# # new_predictions = models.predict(new_embeddings)
# dimention = pd.DataFrame(array,columns=["Dimention"])
# return {"Prediction_Dimention":{no_of_dimention: dimention}}
# def create_embending(message:str):
# embending_message = encoding_model.model.encode(message)
# result = np.array(embending_message).tolist()
# return result