Spaces:
Sleeping
Sleeping
Vela
commited on
Commit
·
6c2eaf8
1
Parent(s):
9f69673
updated
Browse files
src/api/__pycache__/main.cpython-312.pyc
CHANGED
Binary files a/src/api/__pycache__/main.cpython-312.pyc and b/src/api/__pycache__/main.cpython-312.pyc differ
|
|
src/api/main.py
CHANGED
@@ -9,7 +9,7 @@ app = FastAPI()
|
|
9 |
|
10 |
@app.get("/")
|
11 |
def home():
|
12 |
-
encoding_model.train_model()
|
13 |
return {"message": "Welcome to Prediction Hub"}
|
14 |
|
15 |
@app.get("/predict")
|
|
|
9 |
|
10 |
@app.get("/")
|
11 |
def home():
|
12 |
+
model = encoding_model.train_model()
|
13 |
return {"message": "Welcome to Prediction Hub"}
|
14 |
|
15 |
@app.get("/predict")
|
src/modules/__pycache__/encoding_model.cpython-312.pyc
CHANGED
Binary files a/src/modules/__pycache__/encoding_model.cpython-312.pyc and b/src/modules/__pycache__/encoding_model.cpython-312.pyc differ
|
|
src/modules/encoding_model.py
CHANGED
@@ -1,5 +1,4 @@
|
|
1 |
from sentence_transformers import SentenceTransformer
|
2 |
-
model = SentenceTransformer('Alibaba-NLP/gte-base-en-v1.5', trust_remote_code=True)
|
3 |
from sklearn.model_selection import train_test_split
|
4 |
from sklearn.linear_model import LogisticRegression
|
5 |
import pandas as pd
|
@@ -8,6 +7,9 @@ import sys
|
|
8 |
src_directory = os.path.abspath(os.path.join(os.path.dirname(__file__), "../..", "src"))
|
9 |
sys.path.append(src_directory)
|
10 |
from data import sample_data
|
|
|
|
|
|
|
11 |
|
12 |
encoding_model = model
|
13 |
logreg_model = None
|
@@ -31,9 +33,10 @@ def get_label(message):
|
|
31 |
raise ValueError("Model has not been trained yet. Please call train_model first.")
|
32 |
|
33 |
new_embeddings = encoding_model.encode([message])
|
|
|
34 |
|
35 |
prediction = logreg_model.predict(new_embeddings)
|
36 |
|
37 |
no_of_dimensions = len(new_embeddings[0])
|
38 |
-
dimension_df = pd.DataFrame(
|
39 |
-
return {"
|
|
|
1 |
from sentence_transformers import SentenceTransformer
|
|
|
2 |
from sklearn.model_selection import train_test_split
|
3 |
from sklearn.linear_model import LogisticRegression
|
4 |
import pandas as pd
|
|
|
7 |
src_directory = os.path.abspath(os.path.join(os.path.dirname(__file__), "../..", "src"))
|
8 |
sys.path.append(src_directory)
|
9 |
from data import sample_data
|
10 |
+
import numpy as np
|
11 |
+
|
12 |
+
model = SentenceTransformer('Alibaba-NLP/gte-base-en-v1.5', trust_remote_code=True)
|
13 |
|
14 |
encoding_model = model
|
15 |
logreg_model = None
|
|
|
33 |
raise ValueError("Model has not been trained yet. Please call train_model first.")
|
34 |
|
35 |
new_embeddings = encoding_model.encode([message])
|
36 |
+
array = np.array(new_embeddings)[0].tolist()
|
37 |
|
38 |
prediction = logreg_model.predict(new_embeddings)
|
39 |
|
40 |
no_of_dimensions = len(new_embeddings[0])
|
41 |
+
dimension_df = pd.DataFrame(array, columns=["Dimension"])
|
42 |
+
return {"Prediction_Dimension": {no_of_dimensions: dimension_df}}
|