Vela commited on
Commit
6c2eaf8
·
1 Parent(s): 9f69673
src/api/__pycache__/main.cpython-312.pyc CHANGED
Binary files a/src/api/__pycache__/main.cpython-312.pyc and b/src/api/__pycache__/main.cpython-312.pyc differ
 
src/api/main.py CHANGED
@@ -9,7 +9,7 @@ app = FastAPI()
9
 
10
  @app.get("/")
11
  def home():
12
- encoding_model.train_model()
13
  return {"message": "Welcome to Prediction Hub"}
14
 
15
  @app.get("/predict")
 
9
 
10
  @app.get("/")
11
  def home():
12
+ model = encoding_model.train_model()
13
  return {"message": "Welcome to Prediction Hub"}
14
 
15
  @app.get("/predict")
src/modules/__pycache__/encoding_model.cpython-312.pyc CHANGED
Binary files a/src/modules/__pycache__/encoding_model.cpython-312.pyc and b/src/modules/__pycache__/encoding_model.cpython-312.pyc differ
 
src/modules/encoding_model.py CHANGED
@@ -1,5 +1,4 @@
1
  from sentence_transformers import SentenceTransformer
2
- model = SentenceTransformer('Alibaba-NLP/gte-base-en-v1.5', trust_remote_code=True)
3
  from sklearn.model_selection import train_test_split
4
  from sklearn.linear_model import LogisticRegression
5
  import pandas as pd
@@ -8,6 +7,9 @@ import sys
8
  src_directory = os.path.abspath(os.path.join(os.path.dirname(__file__), "../..", "src"))
9
  sys.path.append(src_directory)
10
  from data import sample_data
 
 
 
11
 
12
  encoding_model = model
13
  logreg_model = None
@@ -31,9 +33,10 @@ def get_label(message):
31
  raise ValueError("Model has not been trained yet. Please call train_model first.")
32
 
33
  new_embeddings = encoding_model.encode([message])
 
34
 
35
  prediction = logreg_model.predict(new_embeddings)
36
 
37
  no_of_dimensions = len(new_embeddings[0])
38
- dimension_df = pd.DataFrame(new_embeddings[0], columns=["Dimension"])
39
- return {"Prediction": prediction[0], "Prediction_Dimension": {no_of_dimensions: dimension_df}}
 
1
  from sentence_transformers import SentenceTransformer
 
2
  from sklearn.model_selection import train_test_split
3
  from sklearn.linear_model import LogisticRegression
4
  import pandas as pd
 
7
  src_directory = os.path.abspath(os.path.join(os.path.dirname(__file__), "../..", "src"))
8
  sys.path.append(src_directory)
9
  from data import sample_data
10
+ import numpy as np
11
+
12
+ model = SentenceTransformer('Alibaba-NLP/gte-base-en-v1.5', trust_remote_code=True)
13
 
14
  encoding_model = model
15
  logreg_model = None
 
33
  raise ValueError("Model has not been trained yet. Please call train_model first.")
34
 
35
  new_embeddings = encoding_model.encode([message])
36
+ array = np.array(new_embeddings)[0].tolist()
37
 
38
  prediction = logreg_model.predict(new_embeddings)
39
 
40
  no_of_dimensions = len(new_embeddings[0])
41
+ dimension_df = pd.DataFrame(array, columns=["Dimension"])
42
+ return {"Prediction_Dimension": {no_of_dimensions: dimension_df}}