Spaces:
Sleeping
Sleeping
Vela
commited on
Commit
·
95076c1
1
Parent(s):
07dc157
modified modules
Browse files- __pycache__/tharinee.cpython-312.pyc +0 -0
- src/api/__pycache__/main.cpython-312.pyc +0 -0
- src/api/main.py +2 -2
- src/data/__pycache__/sample_data.cpython-312.pyc +0 -0
- src/data/sample_data.py +1 -0
- src/modules/__pycache__/logistic_regression.cpython-312.pyc +0 -0
- src/modules/logistic_regression.py +2 -1
__pycache__/tharinee.cpython-312.pyc
ADDED
Binary file (2.98 kB). View file
|
|
src/api/__pycache__/main.cpython-312.pyc
CHANGED
Binary files a/src/api/__pycache__/main.cpython-312.pyc and b/src/api/__pycache__/main.cpython-312.pyc differ
|
|
src/api/main.py
CHANGED
@@ -14,7 +14,7 @@ def home():
|
|
14 |
@app.get("/predict")
|
15 |
def display_prediction(message : str = "Hello World"):
|
16 |
try:
|
17 |
-
dimention
|
18 |
-
return
|
19 |
except Exception as e:
|
20 |
return f"Unable to fetch the data {e}"
|
|
|
14 |
@app.get("/predict")
|
15 |
def display_prediction(message : str = "Hello World"):
|
16 |
try:
|
17 |
+
dimention = logistic_regression.get_label(message)
|
18 |
+
return dimention
|
19 |
except Exception as e:
|
20 |
return f"Unable to fetch the data {e}"
|
src/data/__pycache__/sample_data.cpython-312.pyc
CHANGED
Binary files a/src/data/__pycache__/sample_data.cpython-312.pyc and b/src/data/__pycache__/sample_data.cpython-312.pyc differ
|
|
src/data/sample_data.py
CHANGED
@@ -1,4 +1,5 @@
|
|
1 |
import pandas as pd
|
|
|
2 |
|
3 |
def get_data_frame(file_path):
|
4 |
df = pd.read_excel(file_path)
|
|
|
1 |
import pandas as pd
|
2 |
+
from sentence_transformers import SentenceTransformer
|
3 |
|
4 |
def get_data_frame(file_path):
|
5 |
df = pd.read_excel(file_path)
|
src/modules/__pycache__/logistic_regression.cpython-312.pyc
CHANGED
Binary files a/src/modules/__pycache__/logistic_regression.cpython-312.pyc and b/src/modules/__pycache__/logistic_regression.cpython-312.pyc differ
|
|
src/modules/logistic_regression.py
CHANGED
@@ -20,7 +20,8 @@ def get_label(message):
|
|
20 |
models = LogisticRegression(max_iter=100)
|
21 |
models.fit(X_train_embeddings, y_train)
|
22 |
new_embeddings = model.encode(message)
|
|
|
23 |
array = np.array(new_embeddings).tolist()
|
24 |
# new_predictions = models.predict(new_embeddings)
|
25 |
dimention = pd.DataFrame(array,columns=["Dimention"])
|
26 |
-
return dimention
|
|
|
20 |
models = LogisticRegression(max_iter=100)
|
21 |
models.fit(X_train_embeddings, y_train)
|
22 |
new_embeddings = model.encode(message)
|
23 |
+
no_of_dimention = len(new_embeddings)
|
24 |
array = np.array(new_embeddings).tolist()
|
25 |
# new_predictions = models.predict(new_embeddings)
|
26 |
dimention = pd.DataFrame(array,columns=["Dimention"])
|
27 |
+
return {"Prediction_Dimention":{no_of_dimention: dimention}}
|