Vela
enhanced frontedn
8853856
raw
history blame contribute delete
644 Bytes
from sentence_transformers import SentenceTransformer
from langchain.text_splitter import RecursiveCharacterTextSplitter
from backend.utils import logger
logger = logger.get_logger()
model = SentenceTransformer("all-MiniLM-L6-v2")
def get_text_embedding(text):
try:
return model.encode(text, convert_to_tensor=True).cpu().numpy().tolist()
except Exception as e:
logger.error(f"Error generating embedding: {e}")
raise
def chunk_text(text, chunk_size=500, chunk_overlap=100):
splitter = RecursiveCharacterTextSplitter(chunk_size=chunk_size, chunk_overlap=chunk_overlap)
return splitter.split_text(text)