Spaces:
Sleeping
Sleeping
Vela
commited on
Commit
·
78cb0b1
1
Parent(s):
1c1e215
added changes in main.py file
Browse files- __pycache__/main.cpython-312.pyc +0 -0
- __pycache__/models.cpython-312.pyc +0 -0
- main.py +4 -3
- models.py +2 -4
__pycache__/main.cpython-312.pyc
CHANGED
Binary files a/__pycache__/main.cpython-312.pyc and b/__pycache__/main.cpython-312.pyc differ
|
|
__pycache__/models.cpython-312.pyc
CHANGED
Binary files a/__pycache__/models.cpython-312.pyc and b/__pycache__/models.cpython-312.pyc differ
|
|
main.py
CHANGED
@@ -7,8 +7,9 @@ from sentence_transformers import util
|
|
7 |
app = FastAPI()
|
8 |
|
9 |
@app.get("/embeddings")
|
10 |
-
def display_embedding(
|
11 |
-
|
|
|
12 |
dimension = len(embedding)
|
13 |
return {"Dimension" : {dimension : embedding.tolist()}}
|
14 |
|
@@ -16,7 +17,7 @@ def display_embedding(text:str):
|
|
16 |
def display_prediction(prediction : Prediction):
|
17 |
message = prediction.message
|
18 |
embedding = models.get_embedding([message])
|
19 |
-
loaded_model = models.
|
20 |
result = loaded_model.predict(embedding).tolist()
|
21 |
return {"Prediction": f"{message} is a {result}"}
|
22 |
|
|
|
7 |
app = FastAPI()
|
8 |
|
9 |
@app.get("/embeddings")
|
10 |
+
def display_embedding(prediction : Prediction):
|
11 |
+
message = prediction.message
|
12 |
+
embedding = models.get_embedding(message)
|
13 |
dimension = len(embedding)
|
14 |
return {"Dimension" : {dimension : embedding.tolist()}}
|
15 |
|
|
|
17 |
def display_prediction(prediction : Prediction):
|
18 |
message = prediction.message
|
19 |
embedding = models.get_embedding([message])
|
20 |
+
loaded_model = models.load_model('log_reg_model.pkl')
|
21 |
result = loaded_model.predict(embedding).tolist()
|
22 |
return {"Prediction": f"{message} is a {result}"}
|
23 |
|
models.py
CHANGED
@@ -12,7 +12,7 @@ def get_embedding(text):
|
|
12 |
|
13 |
def train_model():
|
14 |
sample_data_df = pd.read_excel("sms_process_data_main.xlsx")
|
15 |
-
sample_data_df.dropna(subset=['MessageText', 'label'], inplace=True)
|
16 |
input = sample_data_df['MessageText']
|
17 |
label = sample_data_df['label']
|
18 |
X_train, X_test, y_train, y_test = train_test_split(input, label, test_size=0.2, random_state=42)
|
@@ -32,6 +32,4 @@ def load_model(filename):
|
|
32 |
with open(filename, 'rb') as model_file:
|
33 |
loaded_model = pickle.load(model_file)
|
34 |
print(f"Model loaded from {filename}")
|
35 |
-
return loaded_model
|
36 |
-
|
37 |
-
loaded_model = load_model('log_reg_model.pkl')
|
|
|
12 |
|
13 |
def train_model():
|
14 |
sample_data_df = pd.read_excel("sms_process_data_main.xlsx")
|
15 |
+
sample_data_df.dropna(subset=['MessageText', 'label'], inplace=True)
|
16 |
input = sample_data_df['MessageText']
|
17 |
label = sample_data_df['label']
|
18 |
X_train, X_test, y_train, y_test = train_test_split(input, label, test_size=0.2, random_state=42)
|
|
|
32 |
with open(filename, 'rb') as model_file:
|
33 |
loaded_model = pickle.load(model_file)
|
34 |
print(f"Model loaded from {filename}")
|
35 |
+
return loaded_model
|
|
|
|