Vela commited on
Commit
78cb0b1
·
1 Parent(s): 1c1e215

added changes in main.py file

Browse files
__pycache__/main.cpython-312.pyc CHANGED
Binary files a/__pycache__/main.cpython-312.pyc and b/__pycache__/main.cpython-312.pyc differ
 
__pycache__/models.cpython-312.pyc CHANGED
Binary files a/__pycache__/models.cpython-312.pyc and b/__pycache__/models.cpython-312.pyc differ
 
main.py CHANGED
@@ -7,8 +7,9 @@ from sentence_transformers import util
7
  app = FastAPI()
8
 
9
  @app.get("/embeddings")
10
- def display_embedding(text:str):
11
- embedding = models.get_embedding(text)
 
12
  dimension = len(embedding)
13
  return {"Dimension" : {dimension : embedding.tolist()}}
14
 
@@ -16,7 +17,7 @@ def display_embedding(text:str):
16
  def display_prediction(prediction : Prediction):
17
  message = prediction.message
18
  embedding = models.get_embedding([message])
19
- loaded_model = models.loaded_model
20
  result = loaded_model.predict(embedding).tolist()
21
  return {"Prediction": f"{message} is a {result}"}
22
 
 
7
  app = FastAPI()
8
 
9
  @app.get("/embeddings")
10
+ def display_embedding(prediction : Prediction):
11
+ message = prediction.message
12
+ embedding = models.get_embedding(message)
13
  dimension = len(embedding)
14
  return {"Dimension" : {dimension : embedding.tolist()}}
15
 
 
17
  def display_prediction(prediction : Prediction):
18
  message = prediction.message
19
  embedding = models.get_embedding([message])
20
+ loaded_model = models.load_model('log_reg_model.pkl')
21
  result = loaded_model.predict(embedding).tolist()
22
  return {"Prediction": f"{message} is a {result}"}
23
 
models.py CHANGED
@@ -12,7 +12,7 @@ def get_embedding(text):
12
 
13
  def train_model():
14
  sample_data_df = pd.read_excel("sms_process_data_main.xlsx")
15
- sample_data_df.dropna(subset=['MessageText', 'label'], inplace=True) # Drop rows with missing labels or texts
16
  input = sample_data_df['MessageText']
17
  label = sample_data_df['label']
18
  X_train, X_test, y_train, y_test = train_test_split(input, label, test_size=0.2, random_state=42)
@@ -32,6 +32,4 @@ def load_model(filename):
32
  with open(filename, 'rb') as model_file:
33
  loaded_model = pickle.load(model_file)
34
  print(f"Model loaded from {filename}")
35
- return loaded_model
36
-
37
- loaded_model = load_model('log_reg_model.pkl')
 
12
 
13
  def train_model():
14
  sample_data_df = pd.read_excel("sms_process_data_main.xlsx")
15
+ sample_data_df.dropna(subset=['MessageText', 'label'], inplace=True)
16
  input = sample_data_df['MessageText']
17
  label = sample_data_df['label']
18
  X_train, X_test, y_train, y_test = train_test_split(input, label, test_size=0.2, random_state=42)
 
32
  with open(filename, 'rb') as model_file:
33
  loaded_model = pickle.load(model_file)
34
  print(f"Model loaded from {filename}")
35
+ return loaded_model