Vela
modified file path
829bd84
raw
history blame
1.81 kB
import os
import sys
src_directory = os.path.abspath(os.path.join(os.path.dirname(__file__), "../..", "frontend"))
sys.path.append(src_directory)
import streamlit as st
import streamlit_functions
st.title("World Population Data")
csv_file = "./world_population.csv"
# csv_file = st.file_uploader("Choose a CSV file", type=['csv'])
if csv_file:
choosen_data = streamlit_functions.choose_data_view(st)
if choosen_data == "Show All Continents":
opt = choosen_data.replace(" ","")
streamlit_functions.display_contents(opt, st)
if choosen_data == "Show All Countries":
opt = choosen_data.replace(" ","")
streamlit_functions.display_contents(opt, st)
if choosen_data == "Show Continent with Highest Population":
opt = choosen_data.replace(" ","")
streamlit_functions.display_contents(opt, st)
if choosen_data == "Show Continent with Lowest Population":
opt = choosen_data.replace(" ","")
streamlit_functions.display_contents(opt, st)
if choosen_data == "Show Country with Highest Population":
opt = choosen_data.replace(" ","")
streamlit_functions.display_contents(opt, st)
if choosen_data == "Show Country with Lowest Population":
opt = choosen_data.replace(" ","")
streamlit_functions.display_contents(opt, st)
# selected_stat = st.selectbox("Select the stat",stat_list)
# list_of_selected_cont = home_page.list_country_by_continent(df,selected_continent)
# selected_key = st.selectbox("Select the key's to fetch data:",df.keys())
# max_population = home_page.get_continent_with_max_pop(df)
# st.write(f"Countries data in {selected_continent}:", list_of_selected_cont)
# st.write(f"{selected_continent}'s with max population is :",max_population)