File size: 5,618 Bytes
dfc542c
 
 
91a458d
dfc542c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
22b9c3e
dfc542c
22b9c3e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dfc542c
22b9c3e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dfc542c
22b9c3e
dfc542c
22b9c3e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dfc542c
22b9c3e
 
dfc542c
22b9c3e
dfc542c
22b9c3e
 
dfc542c
22b9c3e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dfc542c
22b9c3e
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
import pandas as pd
import os
import sys
src_directory = os.path.abspath(os.path.join(os.path.dirname(__file__), "../..", "backend"))
sys.path.append(src_directory)
from utils import logger

file_path =  "./world_population.csv"

# file_path =  "C:/Users/Vijay/Downloads/world_population.csv"
# data_frame = pd.read_csv(file_path)

def process_data():
    try:
        logger.log("I'm going to read the csv")
        data_frame = pd.read_csv(file_path)
        logger.log("I'm reading the csv")
        return data_frame
    except Exception as e :
        logger.log("I couldn't read the file")
        return f"Unable to read the file {e}"
    
def display_continents(dataframe):
    continents = dataframe['Continent'].unique()
    logger.log("Displaying the list of continents in the data")
    return continents

def display_countries(dataframe):
    countries = dataframe['Country'].values
    logger.log("Displaying the list of countries in the data")
    return countries

def continent_stat(dataframe, attribute="Population", stat_type="highest"):
    try:
        if 'Continent' not in dataframe.columns or attribute not in dataframe.columns:
            return ValueError(f"Dataframe must contain 'Continent' and '{attribute}' columns.")
        
        continent_stats = dataframe.groupby('Continent')[attribute].agg(total_attribute='sum')

        if stat_type == "highest":
            continent = continent_stats.idxmax().item()
            value = continent_stats.max().item()
            logger.log(f"Displaying the continent with the highest {attribute}: {continent} with {attribute} {value}")

        elif stat_type == "lowest":
            continent = continent_stats.idxmin().item()
            value = continent_stats.min().item()
            logger.log(f"Displaying the continent with the lowest {attribute}: {continent} with {attribute} {value}")

        else:
            raise ValueError("Invalid stat_type. Use 'highest' or 'lowest'.")
        
        return {continent: value}
    
    except Exception as e:
        logger.log(f"Error in continent_stat: {str(e)}")
        return {"error": str(e)}

def country_stat(dataframe, attribute : str = "Population", stat_type :str = "highest"):
    try : 
        if stat_type.lower() == "highest":
            index= dataframe[attribute].idxmax()
        elif stat_type.lower() == "lowest":
            index= dataframe[attribute].idxmin()

        country = dataframe['Country'][index]
        requested_attribute = dataframe[attribute][index]
        result = {country:requested_attribute.item()}
        logger.log(f"Displaying the country with {stat_type} {attribute} in the data")
        return result
    except Exception as e:
        return f"Unable to fetch the data. Error {e}"

    

# def list_country_by_continent(dataframe,continent):
#     try:
#         df_countries = dataframe[dataframe['Continent'] == continent]
#         countries= df_countries['Country'].to_list()
#         logger.log("Separated data by continent")
#         return countries
#     except Exception as e:
#         return f"{e}"

# def get_stat_by_continent(df ,continent: str, data_type: str, stat: str , ):

#     if continent.lower() == "NorthAmerica".lower():
#         continent = "North America"
#     if continent.lower() == "SouthAmerica".lower():
#         continent = "South America"

#     valid_stats = ['max', 'min', 'mean' , 'sum' , 'count']
#     if stat not in valid_stats:
#         return f"Invalid stat. Please use one of the following: {valid_stats}."
    
#     continent_population_stats = df.groupby('Continent')[data_type].agg(
#         Maximum='max', Minimum='min', Average = 'mean',Total='sum' , Number_of_Countries = 'count')
    
#     continent_countries = df[df['Continent'] == continent]

#     if continent not in continent_population_stats.index:
#         return f"Continent '{continent}' not found in the data."
    
#     if stat == 'max':
#         population_result = continent_population_stats.loc[continent]['Maximum']
#         country_id = continent_countries.loc[continent_countries[data_type].idxmax()]
#         country_name = country_id['Country']
#         population_value = country_id[data_type]
#         return f"{continent}'s {stat} {data_type} is {int(population_result)}. Country: {country_name} , {data_type} :{population_value}"
#     if stat == 'min':  
#         population_result = continent_population_stats.loc[continent]['Minimum']
#         country_id = continent_countries.loc[continent_countries[data_type].idxmin()]
#         country_name = country_id['Country']
#         population_value = country_id[data_type]
#         return f"{continent}'s {stat} {data_type} is {int(population_result)}. Country: {country_name} , {data_type} :{population_value}"
#     if stat == 'mean':
#         population_result = continent_population_stats.loc[continent]['Average']
#         return f"{continent}'s average {data_type} is {int(population_result)}"
#     if stat == 'sum':
#         population_result = continent_population_stats.loc[continent]['Total']
#         return f"{continent}'s total {data_type} is {int(population_result)}"
#     if stat == 'count' :
#         population_result = continent_population_stats.loc[continent]['Number_of_Countries']
#         return f"Total countries in {continent} is {int(population_result)}"
    
# def get_continent_with_max_value(dataframe, key, value):
#     max_id = dataframe[value].idxmax()
#     value_num = dataframe[value][max_id]
#     value_country = dataframe[key][max_id]
#     return f"{value_country}'s max {value} is {value_num}"