import pandas as pd import os import sys src_directory = os.path.abspath(os.path.join(os.path.dirname(__file__), "../..", "backend")) sys.path.append(src_directory) from utils import logger file_path = "./world_population.csv" # file_path = "C:/Users/Vijay/Downloads/world_population.csv" # data_frame = pd.read_csv(file_path) def process_data(): try: logger.log("I'm going to read the csv") data_frame = pd.read_csv(file_path) logger.log("I'm reading the csv") return data_frame except Exception as e : logger.log("I couldn't read the file") return f"Unable to read the file {e}" def display_continents(dataframe): continents = dataframe['Continent'].unique() logger.log("Displaying the list of continents in the data") return continents def display_countries(dataframe): countries = dataframe['Country'].values logger.log("Displaying the list of countries in the data") return countries def continent_with_highest_population(dataframe): highest= dataframe.groupby('Continent')['Population'].agg(total_population = 'sum') max_continent = highest.idxmax().item() max_population = highest.max().item() result = {max_continent:max_population} logger.log("Displaying the continent with highest population in the data") return result def continent_with_lowest_population(dataframe): lowest= dataframe.groupby('Continent')['Population'].agg(total_population = 'sum') min_continent = lowest.idxmin().item() min_population = lowest.min().item() result = {min_continent:min_population} logger.log("Displaying the continent with lowest population in the data") return result def country_with_lowest_population(dataframe): index= dataframe['Population'].idxmin() min_country = dataframe['Country'][index] min_population = dataframe['Population'][index] result = {min_country:min_population.item()} logger.log("Displaying the country with lowest population in the data") return result def country_with_highest_population(dataframe): index= dataframe['Population'].idxmax() max_country = dataframe['Country'][index] max_population = dataframe['Population'][index] result = {max_country:max_population.item()} logger.log("Displaying the country with highest population in the data") return result def list_country_by_continent(dataframe,continent): try: df_countries = dataframe[dataframe['Continent'] == continent] countries= df_countries['Country'].to_list() logger.log("Separated data by continent") return countries except Exception as e: return f"{e}" def get_stat_by_continent(df ,continent: str, data_type: str, stat: str , ): if continent.lower() == "NorthAmerica".lower(): continent = "North America" if continent.lower() == "SouthAmerica".lower(): continent = "South America" valid_stats = ['max', 'min', 'mean' , 'sum' , 'count'] if stat not in valid_stats: return f"Invalid stat. Please use one of the following: {valid_stats}." continent_population_stats = df.groupby('Continent')[data_type].agg( Maximum='max', Minimum='min', Average = 'mean',Total='sum' , Number_of_Countries = 'count') continent_countries = df[df['Continent'] == continent] if continent not in continent_population_stats.index: return f"Continent '{continent}' not found in the data." if stat == 'max': population_result = continent_population_stats.loc[continent]['Maximum'] country_id = continent_countries.loc[continent_countries[data_type].idxmax()] country_name = country_id['Country'] population_value = country_id[data_type] return f"{continent}'s {stat} {data_type} is {int(population_result)}. Country: {country_name} , {data_type} :{population_value}" if stat == 'min': population_result = continent_population_stats.loc[continent]['Minimum'] country_id = continent_countries.loc[continent_countries[data_type].idxmin()] country_name = country_id['Country'] population_value = country_id[data_type] return f"{continent}'s {stat} {data_type} is {int(population_result)}. Country: {country_name} , {data_type} :{population_value}" if stat == 'mean': population_result = continent_population_stats.loc[continent]['Average'] return f"{continent}'s average {data_type} is {int(population_result)}" if stat == 'sum': population_result = continent_population_stats.loc[continent]['Total'] return f"{continent}'s total {data_type} is {int(population_result)}" if stat == 'count' : population_result = continent_population_stats.loc[continent]['Number_of_Countries'] return f"Total countries in {continent} is {int(population_result)}" def get_continent_with_max_value(dataframe, key, value): max_id = dataframe[value].idxmax() value_num = dataframe[value][max_id] value_country = dataframe[key][max_id] return f"{value_country}'s max {value} is {value_num}"