Spaces:
Running
Running
Add support for 1F1B-interleave-overlap.
Browse files- README.md +6 -0
- assets/1f1b_interleave_overlap.png +3 -0
- main.py +21 -0
- src/execution_model.py +2 -2
- src/strategies.py +179 -105
README.md
CHANGED
@@ -57,6 +57,12 @@ uv run python main.py strategy=1f1b_overlap num_devices=4 num_stages=4 num_batch
|
|
57 |
```
|
58 |

|
59 |
|
|
|
|
|
|
|
|
|
|
|
|
|
60 |
## Configuration
|
61 |
|
62 |
The default configuration is in `conf/config.yaml`. You can override any parameter on the command line or create configuration groups for different scenarios.
|
|
|
57 |
```
|
58 |

|
59 |
|
60 |
+
Running for 1F1B-interleave-overlap strategy:
|
61 |
+
```bash
|
62 |
+
uv run python main.py strategy=1f1b_interleave_overlap num_devices=4 num_stages=4 num_batches=8
|
63 |
+
```
|
64 |
+

|
65 |
+
|
66 |
## Configuration
|
67 |
|
68 |
The default configuration is in `conf/config.yaml`. You can override any parameter on the command line or create configuration groups for different scenarios.
|
assets/1f1b_interleave_overlap.png
ADDED
![]() |
Git LFS Details
|
main.py
CHANGED
@@ -1,5 +1,6 @@
|
|
1 |
from src.execution_model import ScheduleConfig
|
2 |
from src.strategies import (
|
|
|
3 |
generate_1f1b_interleave_schedule,
|
4 |
generate_1f1b_overlap_schedule,
|
5 |
generate_1f1b_schedule,
|
@@ -23,6 +24,8 @@ def main(cfg: DictConfig) -> None:
|
|
23 |
run_zero_bubble_1p(cfg)
|
24 |
elif cfg.strategy == "1f1b_overlap":
|
25 |
run_1f1b_overlap(cfg)
|
|
|
|
|
26 |
else:
|
27 |
raise ValueError(f"Unknown strategy: {cfg.strategy}")
|
28 |
|
@@ -107,6 +110,24 @@ def run_1f1b_overlap(cfg: DictConfig) -> None:
|
|
107 |
schedule.execute()
|
108 |
visualize_pipeline_parallelism_dash(schedule, port=cfg.visualization_port)
|
109 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
110 |
|
111 |
if __name__ == "__main__":
|
112 |
main()
|
|
|
1 |
from src.execution_model import ScheduleConfig
|
2 |
from src.strategies import (
|
3 |
+
generate_1f1b_interleave_overlap_schedule,
|
4 |
generate_1f1b_interleave_schedule,
|
5 |
generate_1f1b_overlap_schedule,
|
6 |
generate_1f1b_schedule,
|
|
|
24 |
run_zero_bubble_1p(cfg)
|
25 |
elif cfg.strategy == "1f1b_overlap":
|
26 |
run_1f1b_overlap(cfg)
|
27 |
+
elif cfg.strategy == "1f1b_interleave_overlap":
|
28 |
+
run_1f1b_interleave_overlap(cfg)
|
29 |
else:
|
30 |
raise ValueError(f"Unknown strategy: {cfg.strategy}")
|
31 |
|
|
|
110 |
schedule.execute()
|
111 |
visualize_pipeline_parallelism_dash(schedule, port=cfg.visualization_port)
|
112 |
|
113 |
+
def run_1f1b_interleave_overlap(cfg: DictConfig) -> None:
|
114 |
+
"""Run 1F1B interleave overlapped pipeline parallelism simulation."""
|
115 |
+
# Convert OmegaConf to dict for op_times if it exists
|
116 |
+
op_times = (
|
117 |
+
OmegaConf.to_container(cfg.op_times) if hasattr(cfg, "op_times") else None
|
118 |
+
)
|
119 |
+
|
120 |
+
schedule_config = ScheduleConfig(
|
121 |
+
num_devices=cfg.num_devices,
|
122 |
+
num_stages=cfg.num_stages,
|
123 |
+
num_batches=cfg.num_batches,
|
124 |
+
p2p_latency=cfg.p2p_latency,
|
125 |
+
placement_strategy="interleave",
|
126 |
+
op_times=op_times,
|
127 |
+
)
|
128 |
+
schedule = generate_1f1b_interleave_overlap_schedule(schedule_config)
|
129 |
+
schedule.execute()
|
130 |
+
visualize_pipeline_parallelism_dash(schedule, port=cfg.visualization_port)
|
131 |
|
132 |
if __name__ == "__main__":
|
133 |
main()
|
src/execution_model.py
CHANGED
@@ -158,8 +158,8 @@ class ScheduleConfig:
|
|
158 |
# Check if we have a specific time for this combination
|
159 |
if (op_type1, op_type2) in self.overlapped_op_times:
|
160 |
return self.overlapped_op_times[(op_type1, op_type2)]
|
161 |
-
# Otherwise, use the max of individual times
|
162 |
-
return max(self.get_op_time(op_type1, stage_id), self.get_op_time(op_type2, stage_id))
|
163 |
|
164 |
if op_type not in self.op_times:
|
165 |
raise ValueError(f"Invalid operation type: {op_type}")
|
|
|
158 |
# Check if we have a specific time for this combination
|
159 |
if (op_type1, op_type2) in self.overlapped_op_times:
|
160 |
return self.overlapped_op_times[(op_type1, op_type2)]
|
161 |
+
# Otherwise, use the max of individual times
|
162 |
+
return max(self.get_op_time(op_type1, stage_id), self.get_op_time(op_type2, stage_id))
|
163 |
|
164 |
if op_type not in self.op_times:
|
165 |
raise ValueError(f"Invalid operation type: {op_type}")
|
src/strategies.py
CHANGED
@@ -130,116 +130,104 @@ def generate_1f1b_overlap_schedule(config: ScheduleConfig):
|
|
130 |
return schedule
|
131 |
|
132 |
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
143 |
):
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
# forward_backward_pipelining_with_interleaving
|
154 |
-
# Run (num_model_chunks-1)*microbatch_group_size_per_vp_stage on
|
155 |
-
# all workers, followed by more microbatches after depending on
|
156 |
-
# stage ID (more forward passes for earlier stages, later stages can
|
157 |
-
# immediately start with 1F1B).
|
158 |
-
num_warmup_microbatches = (num_devices - device_id - 1) * 2
|
159 |
-
num_warmup_microbatches += (num_stages_per_device - 1) * microbatch_group_size_per_vp_stage
|
160 |
else:
|
161 |
-
#
|
162 |
-
|
163 |
-
|
164 |
-
|
165 |
-
|
166 |
-
|
167 |
-
|
168 |
-
|
169 |
-
|
170 |
-
|
171 |
-
|
172 |
-
|
173 |
-
|
174 |
-
|
175 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
176 |
|
177 |
-
def get_schedule_table(num_microbatches, num_model_chunks, microbatch_group_size_per_vp_stage):
|
178 |
-
"""Get the schedule table for PP scheduling.
|
179 |
-
|
180 |
-
Create a tunable schedule lookup table.
|
181 |
-
The schedule lookup table uses the virtual_microbatch_id to find the corresponding microbatch_id and model_chunk_id.
|
182 |
-
For example, the tunable schedule table for PP2 N3M5 with VP2 is constructed as below:
|
183 |
-
virtual_microbatch_id | 0 1 2 3 4 5 6 7 8 9
|
184 |
-
microbatch_id | 0 1 2 0 1 2 3 4 3 4
|
185 |
-
model_chunk_id | 0 0 0 1 1 1 0 0 1 1
|
186 |
-
"""
|
187 |
-
schedule_table = []
|
188 |
-
for min_microbatch_id_in_group in range(
|
189 |
-
0, num_microbatches, microbatch_group_size_per_vp_stage
|
190 |
-
):
|
191 |
-
if min_microbatch_id_in_group + microbatch_group_size_per_vp_stage >= num_microbatches:
|
192 |
-
# Construct schedule for the last microbatch group
|
193 |
-
schedule_table.extend(
|
194 |
-
[
|
195 |
-
(microbatch_id, model_chunk_id)
|
196 |
-
for model_chunk_id in range(num_model_chunks)
|
197 |
-
for microbatch_id in range(min_microbatch_id_in_group, num_microbatches)
|
198 |
-
]
|
199 |
-
)
|
200 |
-
else:
|
201 |
-
# Construct schedule for other microbatch groups
|
202 |
-
schedule_table.extend(
|
203 |
-
[
|
204 |
-
(microbatch_id, model_chunk_id)
|
205 |
-
for model_chunk_id in range(num_model_chunks)
|
206 |
-
for microbatch_id in range(
|
207 |
-
min_microbatch_id_in_group,
|
208 |
-
min_microbatch_id_in_group + microbatch_group_size_per_vp_stage,
|
209 |
-
)
|
210 |
-
]
|
211 |
-
)
|
212 |
-
return schedule_table
|
213 |
-
|
214 |
|
215 |
-
|
216 |
-
|
217 |
-
|
218 |
-
virtual_microbatch_id | 0 1 2 3 4 5 6 7 8 9
|
219 |
-
microbatch_id | 0 1 2 0 1 2 3 4 3 4
|
220 |
-
model_chunk_id | 0 0 0 1 1 1 0 0 1 1
|
221 |
-
|
222 |
-
Then the forward backward separated order is:
|
223 |
-
forward | 1 1 1 2 2 2 1 1 2 2
|
224 |
-
backward | -2 -2 -2 -1 -1 -1 -2 -2 -1 -1
|
225 |
-
|
226 |
-
If num_warmup_microbatches is 5, the output order is:
|
227 |
-
1 1 1 2 2 2 -2 1 -2 1 -2 2 -1 2 -1 -1 -2 -2 -1 -1
|
228 |
-
"""
|
229 |
-
_, model_chunk_id_table = zip(*schedule_table)
|
230 |
-
forward_order = [chunk_id + 1 for chunk_id in model_chunk_id_table]
|
231 |
-
backward_order = [chunk_id - num_model_chunks for chunk_id in model_chunk_id_table]
|
232 |
-
order = forward_order[:num_warmup_microbatches]
|
233 |
-
for i in range(num_warmup_microbatches, len(forward_order)):
|
234 |
-
order.append(forward_order[i])
|
235 |
-
order.append(backward_order[i - num_warmup_microbatches])
|
236 |
-
if num_warmup_microbatches > 0:
|
237 |
-
order.extend(backward_order[-num_warmup_microbatches:])
|
238 |
-
return order
|
239 |
|
240 |
for device_id in range(config.num_devices):
|
241 |
microbatch_group_size_per_vp_stage = config.num_devices
|
242 |
-
|
243 |
config.num_batches,
|
244 |
config.num_devices,
|
245 |
device_id,
|
@@ -247,13 +235,13 @@ def generate_1f1b_interleave_schedule(config: ScheduleConfig):
|
|
247 |
microbatch_group_size_per_vp_stage,
|
248 |
)
|
249 |
|
250 |
-
schedule_table =
|
251 |
config.num_batches,
|
252 |
config.num_stages_per_device,
|
253 |
microbatch_group_size_per_vp_stage,
|
254 |
)
|
255 |
|
256 |
-
order =
|
257 |
num_warmup_microbatches,
|
258 |
num_model_chunks=config.num_stages_per_device,
|
259 |
schedule_table=schedule_table,
|
@@ -280,3 +268,89 @@ def generate_1f1b_interleave_schedule(config: ScheduleConfig):
|
|
280 |
schedule.get_op(micro_batch_id, stage_id, op_type)
|
281 |
)
|
282 |
return schedule
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
130 |
return schedule
|
131 |
|
132 |
|
133 |
+
def _get_pp_rank_microbatches(
|
134 |
+
num_microbatches,
|
135 |
+
num_devices,
|
136 |
+
device_id,
|
137 |
+
num_stages_per_device,
|
138 |
+
microbatch_group_size_per_vp_stage,
|
139 |
+
):
|
140 |
+
"""Get the number of total, warmup, and remaining microbatches in PP scheduling."""
|
141 |
+
total_num_microbatches = num_microbatches * num_stages_per_device
|
142 |
+
|
143 |
+
if num_devices > 1:
|
144 |
+
# Run (num_model_chunks-1)*microbatch_group_size_per_vp_stage on
|
145 |
+
# all workers, followed by more microbatches after depending on
|
146 |
+
# stage ID (more forward passes for earlier stages, later stages can
|
147 |
+
# immediately start with 1F1B).
|
148 |
+
num_warmup_microbatches = (num_devices - device_id - 1) * 2
|
149 |
+
num_warmup_microbatches += (num_stages_per_device - 1) * microbatch_group_size_per_vp_stage
|
150 |
+
else:
|
151 |
+
# forward_backward_no_pipelining
|
152 |
+
num_warmup_microbatches = 1
|
153 |
+
|
154 |
+
if num_warmup_microbatches >= total_num_microbatches:
|
155 |
+
num_warmup_microbatches = total_num_microbatches
|
156 |
+
|
157 |
+
return num_warmup_microbatches
|
158 |
+
|
159 |
+
|
160 |
+
def _get_schedule_table(num_microbatches, num_model_chunks, microbatch_group_size_per_vp_stage):
|
161 |
+
"""Get the schedule table for PP scheduling.
|
162 |
+
|
163 |
+
Create a tunable schedule lookup table.
|
164 |
+
The schedule lookup table uses the virtual_microbatch_id to find the corresponding microbatch_id and model_chunk_id.
|
165 |
+
For example, the tunable schedule table for PP2 N3M5 with VP2 is constructed as below:
|
166 |
+
virtual_microbatch_id | 0 1 2 3 4 5 6 7 8 9
|
167 |
+
microbatch_id | 0 1 2 0 1 2 3 4 3 4
|
168 |
+
model_chunk_id | 0 0 0 1 1 1 0 0 1 1
|
169 |
+
"""
|
170 |
+
schedule_table = []
|
171 |
+
for min_microbatch_id_in_group in range(
|
172 |
+
0, num_microbatches, microbatch_group_size_per_vp_stage
|
173 |
):
|
174 |
+
if min_microbatch_id_in_group + microbatch_group_size_per_vp_stage >= num_microbatches:
|
175 |
+
# Construct schedule for the last microbatch group
|
176 |
+
schedule_table.extend(
|
177 |
+
[
|
178 |
+
(microbatch_id, model_chunk_id)
|
179 |
+
for model_chunk_id in range(num_model_chunks)
|
180 |
+
for microbatch_id in range(min_microbatch_id_in_group, num_microbatches)
|
181 |
+
]
|
182 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
183 |
else:
|
184 |
+
# Construct schedule for other microbatch groups
|
185 |
+
schedule_table.extend(
|
186 |
+
[
|
187 |
+
(microbatch_id, model_chunk_id)
|
188 |
+
for model_chunk_id in range(num_model_chunks)
|
189 |
+
for microbatch_id in range(
|
190 |
+
min_microbatch_id_in_group,
|
191 |
+
min_microbatch_id_in_group + microbatch_group_size_per_vp_stage,
|
192 |
+
)
|
193 |
+
]
|
194 |
+
)
|
195 |
+
return schedule_table
|
196 |
+
|
197 |
+
|
198 |
+
def _convert_schedule_table_to_order(num_warmup_microbatches, num_model_chunks, schedule_table):
|
199 |
+
"""Convert a tunable schedule lookup table to the te.make_graphed_callables() accepted
|
200 |
+
order format. For example, the tunable schedule table for PP2 N3M5 with VP2 is as below:
|
201 |
+
virtual_microbatch_id | 0 1 2 3 4 5 6 7 8 9
|
202 |
+
microbatch_id | 0 1 2 0 1 2 3 4 3 4
|
203 |
+
model_chunk_id | 0 0 0 1 1 1 0 0 1 1
|
204 |
+
|
205 |
+
Then the forward backward separated order is:
|
206 |
+
forward | 1 1 1 2 2 2 1 1 2 2
|
207 |
+
backward | -2 -2 -2 -1 -1 -1 -2 -2 -1 -1
|
208 |
+
|
209 |
+
If num_warmup_microbatches is 5, the output order is:
|
210 |
+
1 1 1 2 2 2 -2 1 -2 1 -2 2 -1 2 -1 -1 -2 -2 -1 -1
|
211 |
+
"""
|
212 |
+
_, model_chunk_id_table = zip(*schedule_table)
|
213 |
+
forward_order = [chunk_id + 1 for chunk_id in model_chunk_id_table]
|
214 |
+
backward_order = [chunk_id - num_model_chunks for chunk_id in model_chunk_id_table]
|
215 |
+
order = forward_order[:num_warmup_microbatches]
|
216 |
+
for i in range(num_warmup_microbatches, len(forward_order)):
|
217 |
+
order.append(forward_order[i])
|
218 |
+
order.append(backward_order[i - num_warmup_microbatches])
|
219 |
+
if num_warmup_microbatches > 0:
|
220 |
+
order.extend(backward_order[-num_warmup_microbatches:])
|
221 |
+
return order
|
222 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
223 |
|
224 |
+
# Some codes are copied from Megatron-LM
|
225 |
+
def generate_1f1b_interleave_schedule(config: ScheduleConfig):
|
226 |
+
schedule = Schedule(config)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
227 |
|
228 |
for device_id in range(config.num_devices):
|
229 |
microbatch_group_size_per_vp_stage = config.num_devices
|
230 |
+
num_warmup_microbatches = _get_pp_rank_microbatches(
|
231 |
config.num_batches,
|
232 |
config.num_devices,
|
233 |
device_id,
|
|
|
235 |
microbatch_group_size_per_vp_stage,
|
236 |
)
|
237 |
|
238 |
+
schedule_table = _get_schedule_table(
|
239 |
config.num_batches,
|
240 |
config.num_stages_per_device,
|
241 |
microbatch_group_size_per_vp_stage,
|
242 |
)
|
243 |
|
244 |
+
order = _convert_schedule_table_to_order(
|
245 |
num_warmup_microbatches,
|
246 |
num_model_chunks=config.num_stages_per_device,
|
247 |
schedule_table=schedule_table,
|
|
|
268 |
schedule.get_op(micro_batch_id, stage_id, op_type)
|
269 |
)
|
270 |
return schedule
|
271 |
+
|
272 |
+
def generate_1f1b_interleave_overlap_schedule(config: ScheduleConfig):
|
273 |
+
schedule = Schedule(config)
|
274 |
+
|
275 |
+
for device_id in range(config.num_devices):
|
276 |
+
microbatch_group_size_per_vp_stage = config.num_devices
|
277 |
+
num_warmup_microbatches = _get_pp_rank_microbatches(
|
278 |
+
config.num_batches,
|
279 |
+
config.num_devices,
|
280 |
+
device_id,
|
281 |
+
config.num_stages_per_device,
|
282 |
+
microbatch_group_size_per_vp_stage,
|
283 |
+
)
|
284 |
+
|
285 |
+
schedule_table = _get_schedule_table(
|
286 |
+
config.num_batches,
|
287 |
+
config.num_stages_per_device,
|
288 |
+
microbatch_group_size_per_vp_stage,
|
289 |
+
)
|
290 |
+
|
291 |
+
# NOTE: Add one more warmup microbatch for overlapped operations!
|
292 |
+
num_warmup_microbatches += 1
|
293 |
+
order = _convert_schedule_table_to_order(
|
294 |
+
num_warmup_microbatches,
|
295 |
+
num_model_chunks=config.num_stages_per_device,
|
296 |
+
schedule_table=schedule_table,
|
297 |
+
)
|
298 |
+
|
299 |
+
cur_stage_microbatch_id = {}
|
300 |
+
for i in range(1, config.num_stages_per_device+1):
|
301 |
+
cur_stage_microbatch_id[i] = 0
|
302 |
+
cur_stage_microbatch_id[-i] = 0
|
303 |
+
i = 0
|
304 |
+
|
305 |
+
num_overlapped_batches = len(order) - num_warmup_microbatches * 2
|
306 |
+
while i < len(order):
|
307 |
+
if i < num_warmup_microbatches:
|
308 |
+
order_item = order[i]
|
309 |
+
assert order_item > 0
|
310 |
+
op_type = "forward"
|
311 |
+
micro_batch_id = cur_stage_microbatch_id[order_item]
|
312 |
+
cur_stage_microbatch_id[order_item] = cur_stage_microbatch_id[order_item] + 1
|
313 |
+
|
314 |
+
stage_id = schedule.device_queues[device_id].stages[abs(order_item)-1]
|
315 |
+
schedule.device_queues[device_id].add_operation(
|
316 |
+
schedule.get_op(micro_batch_id, stage_id, op_type)
|
317 |
+
)
|
318 |
+
i += 1
|
319 |
+
elif i >= num_warmup_microbatches and i < num_warmup_microbatches + num_overlapped_batches - 1:
|
320 |
+
order_item_a = order[i]
|
321 |
+
order_item_b = order[i+1]
|
322 |
+
|
323 |
+
op_type_a = "forward" if order_item_a > 0 else "backward"
|
324 |
+
micro_batch_id_a = cur_stage_microbatch_id[order_item_a]
|
325 |
+
cur_stage_microbatch_id[order_item_a] = cur_stage_microbatch_id[order_item_a] + 1
|
326 |
+
|
327 |
+
op_type_b = "forward" if order_item_b > 0 else "backward"
|
328 |
+
micro_batch_id_b = cur_stage_microbatch_id[order_item_b]
|
329 |
+
cur_stage_microbatch_id[order_item_b] = cur_stage_microbatch_id[order_item_b] + 1
|
330 |
+
|
331 |
+
stage_id_a = schedule.device_queues[device_id].stages[abs(order_item_a)-1]
|
332 |
+
stage_id_b = schedule.device_queues[device_id].stages[abs(order_item_b)-1]
|
333 |
+
|
334 |
+
op_a = schedule.get_op(micro_batch_id_a, stage_id_a, op_type_a)
|
335 |
+
op_b = schedule.get_op(micro_batch_id_b, stage_id_b, op_type_b)
|
336 |
+
overlapped_op = OverlappedOperation([op_a, op_b])
|
337 |
+
schedule.register_overlapped_operation(overlapped_op)
|
338 |
+
schedule.device_queues[device_id].add_operation(overlapped_op)
|
339 |
+
|
340 |
+
i += 2
|
341 |
+
else:
|
342 |
+
assert i >= num_warmup_microbatches + num_overlapped_batches
|
343 |
+
order_item = order[i]
|
344 |
+
assert order_item < 0
|
345 |
+
op_type = "backward"
|
346 |
+
micro_batch_id = cur_stage_microbatch_id[order_item]
|
347 |
+
cur_stage_microbatch_id[order_item] = cur_stage_microbatch_id[order_item] + 1
|
348 |
+
|
349 |
+
stage_id = schedule.device_queues[device_id].stages[abs(order_item)-1]
|
350 |
+
schedule.device_queues[device_id].add_operation(
|
351 |
+
schedule.get_op(micro_batch_id, stage_id, op_type)
|
352 |
+
)
|
353 |
+
i += 1
|
354 |
+
|
355 |
+
|
356 |
+
return schedule
|