Spaces:
Runtime error
Runtime error
Add app.py for RAG QA demo
Browse filesConverted the Jupyter notebook into a standalone Python script.
- Defines the embedder, FAISS index loading/creation, retrieval & generation functions.
- Builds the Gradio interface in a `main()` function and launches it.
- Ready for deployment on Hugging Face Spaces.
app.py
ADDED
|
@@ -0,0 +1,370 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#!/usr/bin/env python
|
| 2 |
+
# coding: utf-8
|
| 3 |
+
|
| 4 |
+
# # Retrieval-Augmented QA Demo
|
| 5 |
+
#
|
| 6 |
+
# This notebook builds a minimal RAG (Retrieval-Augmented Generation) pipeline with enhancements:
|
| 7 |
+
#
|
| 8 |
+
# - Slimmed & deduplicated corpora
|
| 9 |
+
# - Chunking long passages
|
| 10 |
+
# - Persistent FAISS index & embeddings
|
| 11 |
+
# - Distance threshold to avoid hallucinations
|
| 12 |
+
# - Context-length control
|
| 13 |
+
# - Polished Gradio interface with separate contexts panel
|
| 14 |
+
|
| 15 |
+
# ## 1. Configuration & Imports
|
| 16 |
+
#
|
| 17 |
+
# We detect device, print settings, and support loading saved index.
|
| 18 |
+
|
| 19 |
+
# In[2]:
|
| 20 |
+
|
| 21 |
+
|
| 22 |
+
import os
|
| 23 |
+
import pickle
|
| 24 |
+
from datasets import load_dataset
|
| 25 |
+
from sentence_transformers import SentenceTransformer, CrossEncoder
|
| 26 |
+
import faiss
|
| 27 |
+
import numpy as np
|
| 28 |
+
import torch
|
| 29 |
+
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, pipeline
|
| 30 |
+
from transformers import AutoTokenizer as _AutoTokenizer
|
| 31 |
+
import gradio as gr
|
| 32 |
+
import evaluate
|
| 33 |
+
|
| 34 |
+
|
| 35 |
+
# Settings
|
| 36 |
+
data_dir = os.path.join(os.getcwd(), "data")
|
| 37 |
+
os.makedirs(data_dir, exist_ok=True)
|
| 38 |
+
INDEX_PATH = os.path.join(data_dir, "faiss_index.faiss")
|
| 39 |
+
EMB_PATH = os.path.join(data_dir, "embeddings.npy")
|
| 40 |
+
PCTX_PATH = os.path.join(data_dir, "passages.pkl")
|
| 41 |
+
|
| 42 |
+
MODEL_NAME = os.getenv("MODEL_NAME", "google/flan-t5-small")
|
| 43 |
+
EMBEDDER_MODEL = os.getenv("EMBEDDER_MODEL", "sentence-transformers/all-MiniLM-L6-v2")
|
| 44 |
+
device = 0 if torch.cuda.is_available() else -1
|
| 45 |
+
print(f"Using model: {MODEL_NAME}, embedder: {EMBEDDER_MODEL}, device: {'GPU' if device==0 else 'CPU'}")
|
| 46 |
+
|
| 47 |
+
# Threshold for maximum acceptable L2 distance
|
| 48 |
+
dist_threshold = 1.0 # tune as needed
|
| 49 |
+
# Max words per context snippet
|
| 50 |
+
max_context_words = 200
|
| 51 |
+
|
| 52 |
+
|
| 53 |
+
# ## Useful functions
|
| 54 |
+
|
| 55 |
+
def make_context_snippets(contexts, max_words=200):
|
| 56 |
+
snippets = []
|
| 57 |
+
for c in contexts:
|
| 58 |
+
words = c.split()
|
| 59 |
+
if len(words) > max_words:
|
| 60 |
+
c = " ".join(words[:max_words]) + " ... [truncated]"
|
| 61 |
+
snippets.append(c)
|
| 62 |
+
return snippets
|
| 63 |
+
|
| 64 |
+
|
| 65 |
+
# ## 2. Load, Deduplicate & Chunk Corpora
|
| 66 |
+
#
|
| 67 |
+
# For this demo we sample small slices and remove duplicates. We also chunk any passage >512 tokens.
|
| 68 |
+
#
|
| 69 |
+
|
| 70 |
+
|
| 71 |
+
# tokenizer for chunking
|
| 72 |
+
chunk_tokenizer = _AutoTokenizer.from_pretrained(MODEL_NAME)
|
| 73 |
+
max_tokens = chunk_tokenizer.model_max_length
|
| 74 |
+
|
| 75 |
+
def chunk_text(text: str, max_tokens: int, stride: int = None) -> list[str]:
|
| 76 |
+
"""
|
| 77 |
+
Split `text` into overlapping chunks of up to max_tokens words.
|
| 78 |
+
By default uses 25% overlap (stride = max_tokens // 4).
|
| 79 |
+
"""
|
| 80 |
+
words = text.split()
|
| 81 |
+
if stride is None:
|
| 82 |
+
stride = max_tokens // 4 # 25% overlap
|
| 83 |
+
chunks = []
|
| 84 |
+
start = 0
|
| 85 |
+
while start < len(words):
|
| 86 |
+
end = start + max_tokens
|
| 87 |
+
chunk = " ".join(words[start:end])
|
| 88 |
+
chunks.append(chunk)
|
| 89 |
+
# advance by stride, not full window
|
| 90 |
+
start += stride
|
| 91 |
+
return chunks
|
| 92 |
+
|
| 93 |
+
|
| 94 |
+
# Load corpora
|
| 95 |
+
wiki_ds = load_dataset("rag-datasets/rag-mini-wikipedia", "text-corpus", split="passages")
|
| 96 |
+
wiki_passages = wiki_ds["passage"]
|
| 97 |
+
|
| 98 |
+
squad_ds = load_dataset("rajpurkar/squad_v2", split="train[:100]")
|
| 99 |
+
squad_passages = [ex["context"] for ex in squad_ds]
|
| 100 |
+
|
| 101 |
+
trivia_ds = load_dataset("mandarjoshi/trivia_qa", "rc", split="validation[:100]")
|
| 102 |
+
trivia_passages = []
|
| 103 |
+
for ex in trivia_ds:
|
| 104 |
+
for field in ("wiki_context", "search_context"):
|
| 105 |
+
txt = ex.get(field) or ""
|
| 106 |
+
if txt:
|
| 107 |
+
trivia_passages.append(txt)
|
| 108 |
+
|
| 109 |
+
# Combine, dedupe, chunk
|
| 110 |
+
all_passages = wiki_passages + squad_passages + trivia_passages
|
| 111 |
+
unique_passages = list(dict.fromkeys(all_passages))
|
| 112 |
+
passages = []
|
| 113 |
+
for p in unique_passages:
|
| 114 |
+
# count tokens without encoding to avoid warnings
|
| 115 |
+
tokens = chunk_tokenizer.tokenize(p)
|
| 116 |
+
if len(tokens) > max_tokens:
|
| 117 |
+
passages.extend(chunk_text(p, max_tokens))
|
| 118 |
+
else:
|
| 119 |
+
passages.append(p)
|
| 120 |
+
print(f"Total passages after dedupe & chunk: {len(passages)}")
|
| 121 |
+
|
| 122 |
+
# Persist raw passages list
|
| 123 |
+
with open(PCTX_PATH, "wb") as f:
|
| 124 |
+
pickle.dump(passages, f)
|
| 125 |
+
|
| 126 |
+
|
| 127 |
+
# ## 3. Build or Load FAISS Index & Embeddings
|
| 128 |
+
#
|
| 129 |
+
# We save embeddings & index to disk to skip slow re-encoding.
|
| 130 |
+
|
| 131 |
+
|
| 132 |
+
# ── Initialize embedder and reranker ──
|
| 133 |
+
from sentence_transformers import SentenceTransformer
|
| 134 |
+
from torch import no_grad
|
| 135 |
+
|
| 136 |
+
|
| 137 |
+
embedder = SentenceTransformer(EMBEDDER_MODEL)
|
| 138 |
+
reranker = CrossEncoder("cross-encoder/ms-marco-MiniLM-L-6-v2")
|
| 139 |
+
|
| 140 |
+
# ── Load or (re)build FAISS index with cosine similarity ──
|
| 141 |
+
if os.path.exists(INDEX_PATH) and os.path.exists(EMB_PATH):
|
| 142 |
+
print("Loading saved index and embeddings…")
|
| 143 |
+
index = faiss.read_index(INDEX_PATH)
|
| 144 |
+
embeddings = np.load(EMB_PATH)
|
| 145 |
+
else:
|
| 146 |
+
print("Encoding passages (with overlap)…")
|
| 147 |
+
embeddings = embedder.encode(
|
| 148 |
+
passages,
|
| 149 |
+
show_progress_bar=True,
|
| 150 |
+
convert_to_numpy=True,
|
| 151 |
+
batch_size=32
|
| 152 |
+
)
|
| 153 |
+
# Normalize to unit length so that inner‐product = cosine sim
|
| 154 |
+
embeddings = embeddings / np.linalg.norm(embeddings, axis=1, keepdims=True)
|
| 155 |
+
|
| 156 |
+
# Build a FAISS index over inner‐product (cosine) space
|
| 157 |
+
dim = embeddings.shape[1]
|
| 158 |
+
index = faiss.IndexFlatIP(dim)
|
| 159 |
+
index.add(embeddings)
|
| 160 |
+
|
| 161 |
+
# Persist to disk for faster reload
|
| 162 |
+
faiss.write_index(index, INDEX_PATH)
|
| 163 |
+
np.save(EMB_PATH, embeddings)
|
| 164 |
+
print(f"Indexed {index.ntotal} vectors.")
|
| 165 |
+
|
| 166 |
+
|
| 167 |
+
# ## 4. Load QA Model & Pipeline
|
| 168 |
+
|
| 169 |
+
|
| 170 |
+
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
|
| 171 |
+
model = AutoModelForSeq2SeqLM.from_pretrained(MODEL_NAME)
|
| 172 |
+
qa_pipeline = pipeline(
|
| 173 |
+
"text2text-generation",
|
| 174 |
+
model=model,
|
| 175 |
+
tokenizer=tokenizer,
|
| 176 |
+
device=device,
|
| 177 |
+
early_stopping=True
|
| 178 |
+
)
|
| 179 |
+
print("QA pipeline ready.")
|
| 180 |
+
|
| 181 |
+
|
| 182 |
+
# ## 5. Retrieval + Generation Functions
|
| 183 |
+
#
|
| 184 |
+
# We bail out early if top distance > threshold to avoid hallucination.
|
| 185 |
+
|
| 186 |
+
|
| 187 |
+
def retrieve(question: str, k: int = 20, rerank_k: int = 5):
|
| 188 |
+
# 1) dense‐search top k
|
| 189 |
+
q_emb = embedder.encode([question], convert_to_numpy=True)
|
| 190 |
+
distances, indices = index.search(q_emb, k)
|
| 191 |
+
|
| 192 |
+
# 2) pull out those k contexts
|
| 193 |
+
candidates = [passages[i] for i in indices[0]]
|
| 194 |
+
|
| 195 |
+
# 3) score with cross‐encoder
|
| 196 |
+
pairs = [[question, ctx] for ctx in candidates]
|
| 197 |
+
scores = reranker.predict(pairs)
|
| 198 |
+
|
| 199 |
+
# 4) pick top rerank_k
|
| 200 |
+
top_idxs = np.argsort(scores)[-rerank_k:][::-1]
|
| 201 |
+
final_ctxs = [candidates[i] for i in top_idxs]
|
| 202 |
+
final_dist = [distances[0][i] for i in top_idxs]
|
| 203 |
+
|
| 204 |
+
return final_ctxs, final_dist
|
| 205 |
+
|
| 206 |
+
|
| 207 |
+
|
| 208 |
+
def generate(question: str, contexts: list) -> str:
|
| 209 |
+
"""
|
| 210 |
+
Build a RAG prompt from the retrieved contexts and generate
|
| 211 |
+
an answer using the HF text2text pipeline.
|
| 212 |
+
"""
|
| 213 |
+
# 1) Turn each context into a truncated snippet
|
| 214 |
+
snippet_lines = [
|
| 215 |
+
f"Context {i+1}: {s}"
|
| 216 |
+
for i, s in enumerate(make_context_snippets(contexts, max_context_words))
|
| 217 |
+
]
|
| 218 |
+
|
| 219 |
+
# 2) Build the full prompt
|
| 220 |
+
prompt = (
|
| 221 |
+
"You are a helpful assistant. Use ONLY the following contexts to answer. "
|
| 222 |
+
"If the answer is not contained, say 'Sorry, I don't know.'\n\n"
|
| 223 |
+
+ "\n".join(snippet_lines)
|
| 224 |
+
+ f"\n\nQuestion: {question}\nAnswer:"
|
| 225 |
+
)
|
| 226 |
+
|
| 227 |
+
# 3) Call the pipeline (it handles tokenization + generation + decoding)
|
| 228 |
+
result = qa_pipeline(prompt, truncation=True, max_new_tokens=200)[0]["generated_text"]
|
| 229 |
+
return result.strip()
|
| 230 |
+
|
| 231 |
+
|
| 232 |
+
def retrieve_and_answer(question, k=5):
|
| 233 |
+
contexts, distances = retrieve(question, k=20)
|
| 234 |
+
if not contexts or distances[0] > dist_threshold:
|
| 235 |
+
return "Sorry, I don't know.", []
|
| 236 |
+
|
| 237 |
+
ans = generate(question, contexts)
|
| 238 |
+
return ans, contexts
|
| 239 |
+
|
| 240 |
+
|
| 241 |
+
import random
|
| 242 |
+
|
| 243 |
+
print("Some sample passages:\n")
|
| 244 |
+
for p in random.sample(passages, 5):
|
| 245 |
+
print(p, "\n" + "-"*80 + "\n")
|
| 246 |
+
|
| 247 |
+
|
| 248 |
+
# ## 6. Gradio Demo Interface
|
| 249 |
+
#
|
| 250 |
+
# Separate panels for answer and contexts.
|
| 251 |
+
|
| 252 |
+
def answer_and_contexts(question: str):
|
| 253 |
+
"""
|
| 254 |
+
Full end-to-end: retrieve, threshold-check, generate answer,
|
| 255 |
+
and return both the answer and a formatted string of contexts.
|
| 256 |
+
"""
|
| 257 |
+
answer, contexts = retrieve_and_answer(question)
|
| 258 |
+
|
| 259 |
+
# If no valid contexts, just return the apology
|
| 260 |
+
if not contexts:
|
| 261 |
+
return answer, ""
|
| 262 |
+
|
| 263 |
+
# Otherwise format each snippet for display
|
| 264 |
+
ctx_snippets = [
|
| 265 |
+
f"Context {i+1}: {s}"
|
| 266 |
+
for i, s in enumerate(make_context_snippets(contexts, max_context_words))
|
| 267 |
+
]
|
| 268 |
+
|
| 269 |
+
return answer, "\n\n---\n\n".join(ctx_snippets)
|
| 270 |
+
|
| 271 |
+
|
| 272 |
+
|
| 273 |
+
iface = gr.Interface(
|
| 274 |
+
fn=answer_and_contexts,
|
| 275 |
+
inputs=gr.Textbox(lines=1, placeholder="Enter your question here...", label="Question"),
|
| 276 |
+
outputs=[
|
| 277 |
+
gr.Textbox(label="Answer"),
|
| 278 |
+
gr.Textbox(label="Retrieved Contexts")
|
| 279 |
+
],
|
| 280 |
+
title="🔍 RAG QA Demo",
|
| 281 |
+
description="Retrieval-Augmented QA with distance threshold and context preview"
|
| 282 |
+
)
|
| 283 |
+
|
| 284 |
+
iface.launch()
|
| 285 |
+
|
| 286 |
+
|
| 287 |
+
# # Test the Model
|
| 288 |
+
|
| 289 |
+
# load SQuAD v2 (we only need validation split)
|
| 290 |
+
squad = load_dataset("rajpurkar/squad_v2", split="validation")
|
| 291 |
+
|
| 292 |
+
# load the SQuAD metric (handles no-answer properly)
|
| 293 |
+
squad_metric = evaluate.load("squad")
|
| 294 |
+
|
| 295 |
+
|
| 296 |
+
def retrieval_recall(dataset, k=20, num_samples=100):
|
| 297 |
+
hits = 0
|
| 298 |
+
for ex in dataset.select(range(num_samples)):
|
| 299 |
+
question = ex["question"]
|
| 300 |
+
gold_answers = ex["answers"]["text"] # list, empty if unanswerable
|
| 301 |
+
|
| 302 |
+
# get your top-k contexts
|
| 303 |
+
ctxs, _ = retrieve(question, k=k, rerank_k=k) # or rerank_k smaller
|
| 304 |
+
# check if any gold answer appears in any context
|
| 305 |
+
if any(any(ans in ctx for ctx in ctxs) for ans in gold_answers):
|
| 306 |
+
hits += 1
|
| 307 |
+
|
| 308 |
+
recall = hits / num_samples
|
| 309 |
+
print(f"Retrieval Recall@{k}: {recall:.3f}")
|
| 310 |
+
return recall
|
| 311 |
+
|
| 312 |
+
|
| 313 |
+
# ## Only answerable Questions
|
| 314 |
+
|
| 315 |
+
|
| 316 |
+
def retrieval_recall_answerable(dataset, k=20, num_samples=100):
|
| 317 |
+
hits = 0
|
| 318 |
+
total = 0
|
| 319 |
+
for ex in dataset.select(range(num_samples)):
|
| 320 |
+
if not ex["answers"]["text"]:
|
| 321 |
+
continue # skip unanswerable
|
| 322 |
+
total += 1
|
| 323 |
+
ctxs, _ = retrieve(ex["question"], k=k, rerank_k=k)
|
| 324 |
+
if any(any(ans in ctx for ctx in ctxs) for ans in ex["answers"]["text"]):
|
| 325 |
+
hits += 1
|
| 326 |
+
recall = hits / total
|
| 327 |
+
print(f"Retrieval Recall@{k} on answerable only: {recall:.3f} ({hits}/{total})")
|
| 328 |
+
return recall
|
| 329 |
+
|
| 330 |
+
def qa_eval_all(dataset, num_samples=100, k=20):
|
| 331 |
+
preds, refs = [], []
|
| 332 |
+
for ex in dataset.select(range(num_samples)):
|
| 333 |
+
qid = ex["id"]
|
| 334 |
+
gold = ex["answers"]
|
| 335 |
+
# ensure metric has something to iterate over
|
| 336 |
+
if not gold["text"]:
|
| 337 |
+
gold = {"text":[""], "answer_start":[0]}
|
| 338 |
+
|
| 339 |
+
ans, _ = retrieve_and_answer(ex["question"], k=k)
|
| 340 |
+
# for metric purposes, treat our refusal as empty string
|
| 341 |
+
pred_text = "" if ans.strip().lower().startswith("sorry") else ans
|
| 342 |
+
|
| 343 |
+
preds.append({"id": qid, "prediction_text": pred_text})
|
| 344 |
+
refs.append({"id": qid, "answers": gold})
|
| 345 |
+
|
| 346 |
+
results = squad_metric.compute(predictions=preds, references=refs)
|
| 347 |
+
print(f"Full QA EM: {results['exact_match']:.2f}, F1: {results['f1']:.2f}")
|
| 348 |
+
return results
|
| 349 |
+
|
| 350 |
+
def qa_eval_answerable(dataset, num_samples=100, k=20):
|
| 351 |
+
preds, refs = [], []
|
| 352 |
+
for ex in dataset.select(range(num_samples)):
|
| 353 |
+
if not ex["answers"]["text"]:
|
| 354 |
+
continue # skip unanswerable
|
| 355 |
+
qid = ex["id"]
|
| 356 |
+
ans, _ = retrieve_and_answer(ex["question"], k=k)
|
| 357 |
+
|
| 358 |
+
preds.append({"id": qid, "prediction_text": ans})
|
| 359 |
+
refs.append({"id": qid, "answers": ex["answers"]})
|
| 360 |
+
|
| 361 |
+
results = squad_metric.compute(predictions=preds, references=refs)
|
| 362 |
+
print(f"Answerable-only QA EM: {results['exact_match']:.2f}, F1: {results['f1']:.2f}")
|
| 363 |
+
return results
|
| 364 |
+
|
| 365 |
+
|
| 366 |
+
retrieval_recall(squad, k=2, num_samples=100)
|
| 367 |
+
retrieval_recall_answerable(squad, k=2, num_samples=100)
|
| 368 |
+
qa_eval_all(squad, num_samples=100, k=2)
|
| 369 |
+
qa_eval_answerable(squad, num_samples=100, k=2)
|
| 370 |
+
|