Spaces:
Sleeping
Sleeping
Add app.py for RAG QA demo
Browse filesConverted the Jupyter notebook into a standalone Python script.
- Defines the embedder, FAISS index loading/creation, retrieval & generation functions.
- Builds the Gradio interface in a `main()` function and launches it.
- Ready for deployment on Hugging Face Spaces.
app.py
ADDED
@@ -0,0 +1,370 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python
|
2 |
+
# coding: utf-8
|
3 |
+
|
4 |
+
# # Retrieval-Augmented QA Demo
|
5 |
+
#
|
6 |
+
# This notebook builds a minimal RAG (Retrieval-Augmented Generation) pipeline with enhancements:
|
7 |
+
#
|
8 |
+
# - Slimmed & deduplicated corpora
|
9 |
+
# - Chunking long passages
|
10 |
+
# - Persistent FAISS index & embeddings
|
11 |
+
# - Distance threshold to avoid hallucinations
|
12 |
+
# - Context-length control
|
13 |
+
# - Polished Gradio interface with separate contexts panel
|
14 |
+
|
15 |
+
# ## 1. Configuration & Imports
|
16 |
+
#
|
17 |
+
# We detect device, print settings, and support loading saved index.
|
18 |
+
|
19 |
+
# In[2]:
|
20 |
+
|
21 |
+
|
22 |
+
import os
|
23 |
+
import pickle
|
24 |
+
from datasets import load_dataset
|
25 |
+
from sentence_transformers import SentenceTransformer, CrossEncoder
|
26 |
+
import faiss
|
27 |
+
import numpy as np
|
28 |
+
import torch
|
29 |
+
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, pipeline
|
30 |
+
from transformers import AutoTokenizer as _AutoTokenizer
|
31 |
+
import gradio as gr
|
32 |
+
import evaluate
|
33 |
+
|
34 |
+
|
35 |
+
# Settings
|
36 |
+
data_dir = os.path.join(os.getcwd(), "data")
|
37 |
+
os.makedirs(data_dir, exist_ok=True)
|
38 |
+
INDEX_PATH = os.path.join(data_dir, "faiss_index.faiss")
|
39 |
+
EMB_PATH = os.path.join(data_dir, "embeddings.npy")
|
40 |
+
PCTX_PATH = os.path.join(data_dir, "passages.pkl")
|
41 |
+
|
42 |
+
MODEL_NAME = os.getenv("MODEL_NAME", "google/flan-t5-small")
|
43 |
+
EMBEDDER_MODEL = os.getenv("EMBEDDER_MODEL", "sentence-transformers/all-MiniLM-L6-v2")
|
44 |
+
device = 0 if torch.cuda.is_available() else -1
|
45 |
+
print(f"Using model: {MODEL_NAME}, embedder: {EMBEDDER_MODEL}, device: {'GPU' if device==0 else 'CPU'}")
|
46 |
+
|
47 |
+
# Threshold for maximum acceptable L2 distance
|
48 |
+
dist_threshold = 1.0 # tune as needed
|
49 |
+
# Max words per context snippet
|
50 |
+
max_context_words = 200
|
51 |
+
|
52 |
+
|
53 |
+
# ## Useful functions
|
54 |
+
|
55 |
+
def make_context_snippets(contexts, max_words=200):
|
56 |
+
snippets = []
|
57 |
+
for c in contexts:
|
58 |
+
words = c.split()
|
59 |
+
if len(words) > max_words:
|
60 |
+
c = " ".join(words[:max_words]) + " ... [truncated]"
|
61 |
+
snippets.append(c)
|
62 |
+
return snippets
|
63 |
+
|
64 |
+
|
65 |
+
# ## 2. Load, Deduplicate & Chunk Corpora
|
66 |
+
#
|
67 |
+
# For this demo we sample small slices and remove duplicates. We also chunk any passage >512 tokens.
|
68 |
+
#
|
69 |
+
|
70 |
+
|
71 |
+
# tokenizer for chunking
|
72 |
+
chunk_tokenizer = _AutoTokenizer.from_pretrained(MODEL_NAME)
|
73 |
+
max_tokens = chunk_tokenizer.model_max_length
|
74 |
+
|
75 |
+
def chunk_text(text: str, max_tokens: int, stride: int = None) -> list[str]:
|
76 |
+
"""
|
77 |
+
Split `text` into overlapping chunks of up to max_tokens words.
|
78 |
+
By default uses 25% overlap (stride = max_tokens // 4).
|
79 |
+
"""
|
80 |
+
words = text.split()
|
81 |
+
if stride is None:
|
82 |
+
stride = max_tokens // 4 # 25% overlap
|
83 |
+
chunks = []
|
84 |
+
start = 0
|
85 |
+
while start < len(words):
|
86 |
+
end = start + max_tokens
|
87 |
+
chunk = " ".join(words[start:end])
|
88 |
+
chunks.append(chunk)
|
89 |
+
# advance by stride, not full window
|
90 |
+
start += stride
|
91 |
+
return chunks
|
92 |
+
|
93 |
+
|
94 |
+
# Load corpora
|
95 |
+
wiki_ds = load_dataset("rag-datasets/rag-mini-wikipedia", "text-corpus", split="passages")
|
96 |
+
wiki_passages = wiki_ds["passage"]
|
97 |
+
|
98 |
+
squad_ds = load_dataset("rajpurkar/squad_v2", split="train[:100]")
|
99 |
+
squad_passages = [ex["context"] for ex in squad_ds]
|
100 |
+
|
101 |
+
trivia_ds = load_dataset("mandarjoshi/trivia_qa", "rc", split="validation[:100]")
|
102 |
+
trivia_passages = []
|
103 |
+
for ex in trivia_ds:
|
104 |
+
for field in ("wiki_context", "search_context"):
|
105 |
+
txt = ex.get(field) or ""
|
106 |
+
if txt:
|
107 |
+
trivia_passages.append(txt)
|
108 |
+
|
109 |
+
# Combine, dedupe, chunk
|
110 |
+
all_passages = wiki_passages + squad_passages + trivia_passages
|
111 |
+
unique_passages = list(dict.fromkeys(all_passages))
|
112 |
+
passages = []
|
113 |
+
for p in unique_passages:
|
114 |
+
# count tokens without encoding to avoid warnings
|
115 |
+
tokens = chunk_tokenizer.tokenize(p)
|
116 |
+
if len(tokens) > max_tokens:
|
117 |
+
passages.extend(chunk_text(p, max_tokens))
|
118 |
+
else:
|
119 |
+
passages.append(p)
|
120 |
+
print(f"Total passages after dedupe & chunk: {len(passages)}")
|
121 |
+
|
122 |
+
# Persist raw passages list
|
123 |
+
with open(PCTX_PATH, "wb") as f:
|
124 |
+
pickle.dump(passages, f)
|
125 |
+
|
126 |
+
|
127 |
+
# ## 3. Build or Load FAISS Index & Embeddings
|
128 |
+
#
|
129 |
+
# We save embeddings & index to disk to skip slow re-encoding.
|
130 |
+
|
131 |
+
|
132 |
+
# ── Initialize embedder and reranker ──
|
133 |
+
from sentence_transformers import SentenceTransformer
|
134 |
+
from torch import no_grad
|
135 |
+
|
136 |
+
|
137 |
+
embedder = SentenceTransformer(EMBEDDER_MODEL)
|
138 |
+
reranker = CrossEncoder("cross-encoder/ms-marco-MiniLM-L-6-v2")
|
139 |
+
|
140 |
+
# ── Load or (re)build FAISS index with cosine similarity ──
|
141 |
+
if os.path.exists(INDEX_PATH) and os.path.exists(EMB_PATH):
|
142 |
+
print("Loading saved index and embeddings…")
|
143 |
+
index = faiss.read_index(INDEX_PATH)
|
144 |
+
embeddings = np.load(EMB_PATH)
|
145 |
+
else:
|
146 |
+
print("Encoding passages (with overlap)…")
|
147 |
+
embeddings = embedder.encode(
|
148 |
+
passages,
|
149 |
+
show_progress_bar=True,
|
150 |
+
convert_to_numpy=True,
|
151 |
+
batch_size=32
|
152 |
+
)
|
153 |
+
# Normalize to unit length so that inner‐product = cosine sim
|
154 |
+
embeddings = embeddings / np.linalg.norm(embeddings, axis=1, keepdims=True)
|
155 |
+
|
156 |
+
# Build a FAISS index over inner‐product (cosine) space
|
157 |
+
dim = embeddings.shape[1]
|
158 |
+
index = faiss.IndexFlatIP(dim)
|
159 |
+
index.add(embeddings)
|
160 |
+
|
161 |
+
# Persist to disk for faster reload
|
162 |
+
faiss.write_index(index, INDEX_PATH)
|
163 |
+
np.save(EMB_PATH, embeddings)
|
164 |
+
print(f"Indexed {index.ntotal} vectors.")
|
165 |
+
|
166 |
+
|
167 |
+
# ## 4. Load QA Model & Pipeline
|
168 |
+
|
169 |
+
|
170 |
+
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
|
171 |
+
model = AutoModelForSeq2SeqLM.from_pretrained(MODEL_NAME)
|
172 |
+
qa_pipeline = pipeline(
|
173 |
+
"text2text-generation",
|
174 |
+
model=model,
|
175 |
+
tokenizer=tokenizer,
|
176 |
+
device=device,
|
177 |
+
early_stopping=True
|
178 |
+
)
|
179 |
+
print("QA pipeline ready.")
|
180 |
+
|
181 |
+
|
182 |
+
# ## 5. Retrieval + Generation Functions
|
183 |
+
#
|
184 |
+
# We bail out early if top distance > threshold to avoid hallucination.
|
185 |
+
|
186 |
+
|
187 |
+
def retrieve(question: str, k: int = 20, rerank_k: int = 5):
|
188 |
+
# 1) dense‐search top k
|
189 |
+
q_emb = embedder.encode([question], convert_to_numpy=True)
|
190 |
+
distances, indices = index.search(q_emb, k)
|
191 |
+
|
192 |
+
# 2) pull out those k contexts
|
193 |
+
candidates = [passages[i] for i in indices[0]]
|
194 |
+
|
195 |
+
# 3) score with cross‐encoder
|
196 |
+
pairs = [[question, ctx] for ctx in candidates]
|
197 |
+
scores = reranker.predict(pairs)
|
198 |
+
|
199 |
+
# 4) pick top rerank_k
|
200 |
+
top_idxs = np.argsort(scores)[-rerank_k:][::-1]
|
201 |
+
final_ctxs = [candidates[i] for i in top_idxs]
|
202 |
+
final_dist = [distances[0][i] for i in top_idxs]
|
203 |
+
|
204 |
+
return final_ctxs, final_dist
|
205 |
+
|
206 |
+
|
207 |
+
|
208 |
+
def generate(question: str, contexts: list) -> str:
|
209 |
+
"""
|
210 |
+
Build a RAG prompt from the retrieved contexts and generate
|
211 |
+
an answer using the HF text2text pipeline.
|
212 |
+
"""
|
213 |
+
# 1) Turn each context into a truncated snippet
|
214 |
+
snippet_lines = [
|
215 |
+
f"Context {i+1}: {s}"
|
216 |
+
for i, s in enumerate(make_context_snippets(contexts, max_context_words))
|
217 |
+
]
|
218 |
+
|
219 |
+
# 2) Build the full prompt
|
220 |
+
prompt = (
|
221 |
+
"You are a helpful assistant. Use ONLY the following contexts to answer. "
|
222 |
+
"If the answer is not contained, say 'Sorry, I don't know.'\n\n"
|
223 |
+
+ "\n".join(snippet_lines)
|
224 |
+
+ f"\n\nQuestion: {question}\nAnswer:"
|
225 |
+
)
|
226 |
+
|
227 |
+
# 3) Call the pipeline (it handles tokenization + generation + decoding)
|
228 |
+
result = qa_pipeline(prompt, truncation=True, max_new_tokens=200)[0]["generated_text"]
|
229 |
+
return result.strip()
|
230 |
+
|
231 |
+
|
232 |
+
def retrieve_and_answer(question, k=5):
|
233 |
+
contexts, distances = retrieve(question, k=20)
|
234 |
+
if not contexts or distances[0] > dist_threshold:
|
235 |
+
return "Sorry, I don't know.", []
|
236 |
+
|
237 |
+
ans = generate(question, contexts)
|
238 |
+
return ans, contexts
|
239 |
+
|
240 |
+
|
241 |
+
import random
|
242 |
+
|
243 |
+
print("Some sample passages:\n")
|
244 |
+
for p in random.sample(passages, 5):
|
245 |
+
print(p, "\n" + "-"*80 + "\n")
|
246 |
+
|
247 |
+
|
248 |
+
# ## 6. Gradio Demo Interface
|
249 |
+
#
|
250 |
+
# Separate panels for answer and contexts.
|
251 |
+
|
252 |
+
def answer_and_contexts(question: str):
|
253 |
+
"""
|
254 |
+
Full end-to-end: retrieve, threshold-check, generate answer,
|
255 |
+
and return both the answer and a formatted string of contexts.
|
256 |
+
"""
|
257 |
+
answer, contexts = retrieve_and_answer(question)
|
258 |
+
|
259 |
+
# If no valid contexts, just return the apology
|
260 |
+
if not contexts:
|
261 |
+
return answer, ""
|
262 |
+
|
263 |
+
# Otherwise format each snippet for display
|
264 |
+
ctx_snippets = [
|
265 |
+
f"Context {i+1}: {s}"
|
266 |
+
for i, s in enumerate(make_context_snippets(contexts, max_context_words))
|
267 |
+
]
|
268 |
+
|
269 |
+
return answer, "\n\n---\n\n".join(ctx_snippets)
|
270 |
+
|
271 |
+
|
272 |
+
|
273 |
+
iface = gr.Interface(
|
274 |
+
fn=answer_and_contexts,
|
275 |
+
inputs=gr.Textbox(lines=1, placeholder="Enter your question here...", label="Question"),
|
276 |
+
outputs=[
|
277 |
+
gr.Textbox(label="Answer"),
|
278 |
+
gr.Textbox(label="Retrieved Contexts")
|
279 |
+
],
|
280 |
+
title="🔍 RAG QA Demo",
|
281 |
+
description="Retrieval-Augmented QA with distance threshold and context preview"
|
282 |
+
)
|
283 |
+
|
284 |
+
iface.launch()
|
285 |
+
|
286 |
+
|
287 |
+
# # Test the Model
|
288 |
+
|
289 |
+
# load SQuAD v2 (we only need validation split)
|
290 |
+
squad = load_dataset("rajpurkar/squad_v2", split="validation")
|
291 |
+
|
292 |
+
# load the SQuAD metric (handles no-answer properly)
|
293 |
+
squad_metric = evaluate.load("squad")
|
294 |
+
|
295 |
+
|
296 |
+
def retrieval_recall(dataset, k=20, num_samples=100):
|
297 |
+
hits = 0
|
298 |
+
for ex in dataset.select(range(num_samples)):
|
299 |
+
question = ex["question"]
|
300 |
+
gold_answers = ex["answers"]["text"] # list, empty if unanswerable
|
301 |
+
|
302 |
+
# get your top-k contexts
|
303 |
+
ctxs, _ = retrieve(question, k=k, rerank_k=k) # or rerank_k smaller
|
304 |
+
# check if any gold answer appears in any context
|
305 |
+
if any(any(ans in ctx for ctx in ctxs) for ans in gold_answers):
|
306 |
+
hits += 1
|
307 |
+
|
308 |
+
recall = hits / num_samples
|
309 |
+
print(f"Retrieval Recall@{k}: {recall:.3f}")
|
310 |
+
return recall
|
311 |
+
|
312 |
+
|
313 |
+
# ## Only answerable Questions
|
314 |
+
|
315 |
+
|
316 |
+
def retrieval_recall_answerable(dataset, k=20, num_samples=100):
|
317 |
+
hits = 0
|
318 |
+
total = 0
|
319 |
+
for ex in dataset.select(range(num_samples)):
|
320 |
+
if not ex["answers"]["text"]:
|
321 |
+
continue # skip unanswerable
|
322 |
+
total += 1
|
323 |
+
ctxs, _ = retrieve(ex["question"], k=k, rerank_k=k)
|
324 |
+
if any(any(ans in ctx for ctx in ctxs) for ans in ex["answers"]["text"]):
|
325 |
+
hits += 1
|
326 |
+
recall = hits / total
|
327 |
+
print(f"Retrieval Recall@{k} on answerable only: {recall:.3f} ({hits}/{total})")
|
328 |
+
return recall
|
329 |
+
|
330 |
+
def qa_eval_all(dataset, num_samples=100, k=20):
|
331 |
+
preds, refs = [], []
|
332 |
+
for ex in dataset.select(range(num_samples)):
|
333 |
+
qid = ex["id"]
|
334 |
+
gold = ex["answers"]
|
335 |
+
# ensure metric has something to iterate over
|
336 |
+
if not gold["text"]:
|
337 |
+
gold = {"text":[""], "answer_start":[0]}
|
338 |
+
|
339 |
+
ans, _ = retrieve_and_answer(ex["question"], k=k)
|
340 |
+
# for metric purposes, treat our refusal as empty string
|
341 |
+
pred_text = "" if ans.strip().lower().startswith("sorry") else ans
|
342 |
+
|
343 |
+
preds.append({"id": qid, "prediction_text": pred_text})
|
344 |
+
refs.append({"id": qid, "answers": gold})
|
345 |
+
|
346 |
+
results = squad_metric.compute(predictions=preds, references=refs)
|
347 |
+
print(f"Full QA EM: {results['exact_match']:.2f}, F1: {results['f1']:.2f}")
|
348 |
+
return results
|
349 |
+
|
350 |
+
def qa_eval_answerable(dataset, num_samples=100, k=20):
|
351 |
+
preds, refs = [], []
|
352 |
+
for ex in dataset.select(range(num_samples)):
|
353 |
+
if not ex["answers"]["text"]:
|
354 |
+
continue # skip unanswerable
|
355 |
+
qid = ex["id"]
|
356 |
+
ans, _ = retrieve_and_answer(ex["question"], k=k)
|
357 |
+
|
358 |
+
preds.append({"id": qid, "prediction_text": ans})
|
359 |
+
refs.append({"id": qid, "answers": ex["answers"]})
|
360 |
+
|
361 |
+
results = squad_metric.compute(predictions=preds, references=refs)
|
362 |
+
print(f"Answerable-only QA EM: {results['exact_match']:.2f}, F1: {results['f1']:.2f}")
|
363 |
+
return results
|
364 |
+
|
365 |
+
|
366 |
+
retrieval_recall(squad, k=2, num_samples=100)
|
367 |
+
retrieval_recall_answerable(squad, k=2, num_samples=100)
|
368 |
+
qa_eval_all(squad, num_samples=100, k=2)
|
369 |
+
qa_eval_answerable(squad, num_samples=100, k=2)
|
370 |
+
|